Общероссийский научно-технический журнал

АВИАЦИЯ ♦ РАКЕТНАЯ ТЕХНИКА ♦ КОСМОНАВТИКА

Орган Российской академии космонавтики им. К.Э. Циолковского и Академии наук авиации и воздухоплавания

Журнал выходит ежемесячно Выпускается с августа 1998 г.

Г.В. НОВОЖИЛОВ -

Главный редактор (авиация)

A.C. KOPOTEEB -

Главный редактор (ракетная техника и космонавтика)

Л.А. ГИЛЬБЕРГ –

зам. Главного редактора

оам. тлавного родо	
Члены	Редакционный
редакционной	
коллегии в.в. алавердов	A.M. MATBEEHKO -
В.В. АЛАВЕРДОВ	председатель
А.А. АЛЕКСАНДРОВ	О.М. АЛИФАНОВ
А.П. АЛЕКСАНДРОВ	Н.А. АНФИМОВ И В БАРМИН
А.А. АЛЕКСАНДРОВ А.П. АЛЕКСАНДРОВ А.Н. ГЕРАЩЕНКО	В.Е. БАРСУК
В.Г. ДМИТРИЕВ	В.Ф. БЕЗЪЯЗЫЧНЫИ
А.Н. ЗЕЛИН	Б.В. БОДИН А.Ф. ВОЙНОВ
Б.И. КАТОРГИН	Ю.Ф.ГОРТЫШОВ
п.и. климук	М.Б. ГУЗАИРОВ
A.A. JIEOHOB	Г.Л. ДЕГТЯРЕВ
B.A. JIOHOTA	О.Ф. ДЕМЧЕНКО
A.M. MAIBEERKU	Н.Н. ДОЛЖЕНКОВ Ю С ЕПИСЕЕВ
LA MONCEER	С.Ю. ЖЕЛТОВ
Δ Φ MOPOSEHKO	л.м. зеленый
Φ H MACHNKOB	A.H. KVIPVIJIVIH B.A. KOBSER
А.Н. ПЕРМИНОВ	B.A. KOMAPOB
м.а. погосян	A.A. KOPOTEEB
Г.М. ПОЛИЩУК	А.Н. КУРИЛЕНКО
Г.Г. РАЙКУНОВ	л.н. лысенко
О.Н. РУМЯНЦЕВА	A.N. MAHUH
М.П. СИМОНОВ	Т.А. МУСАБАЕВ
В.В. ТЕРЕШКОВА	B.E. HECTEPOB
И.Б. ФЕДОРОВ	К.М. ПИЧХАДЗЕ С.С. ПОЗЛНЯКОВ
Е.А. ФЕДОСОВ	В.А. ПОЛЕТАЕВ
B.B. XAPTOB	Ю.А. РЫЖОВ
С.Л. ЧЕРНЫШЕВ	В.Г. СВЕТПОВ
Ответственные	А.Н. СЕРЬЕЗНОВ
секретари	М.Ю.СМУРОВ
журнала	А.В. СОЛЛОГУБ
N.A. MENUNC	В.А. СОЛОВЬЕВ
Д.Л. ЧЕГПИС В	A.VI. TATYEB F.F. YEPTOK
А.П. АЛЕКСАНДРОВ А.Н. ГЕРАЩЕНКО В.Г. ДМИТРИЕВ А.Н. ЗЕЛИН Б.И. КАТОРГИН П.И. КЛИМУК А.А. ЛЕОНОВ В.А. ЛОПОТА А.М. МАТВЕНКО С.В. МИХЕЕВ Н.Ф. МОИСЕЕВ А.Ф. МОРОЗЕНКО Ф.Н. МЯСНИКОВ А.Н. ПЕРМИНОВ М.А. ПОГОСЯН Г.М. ПОЛИЩУК Г.Г. РАЙКУНОВ О.Н. РУМЯНЦЕВА М.П. СИМОНОВ В.В. ТЕРЕШКОВА И.Б. ФЕДОРОВ Е.А. ФЕДОСОВ В.В. ХАРТОВ С.Л. ЧЕРНЫШЕВ ОТВЕТСТВЕННЫЕ СЕКРЕТАРИ ОТВЕТСТВЕННЫЕ СЕКРЕТАРИ ОТВЕТСТВЕННЫЕ СРЕДАКТОР- ОРГАНИЗАТОРО О.С. РОДЗЕВИЧ	В.В. ШАЛАЙ
организатор	В.А. ШАТАЛОВ
О.С. РОДЗЕВИЧ	и.с. шевчук

Представители журнала:

г. Казань: Р.И. АДГАМОВ, тел. (843) 238-46-23 Роскосмос: А.А. ВОРОБЬЕВ, тел. (495) 975-45-86 Минобороны РФ: А.В. ДРОБЫШЕВСКИЙ, тел. (495) 696-44-38

г. Уфа: О.Б. СЕВЕРИНОВА, тел. (3472) 73-07-23 Франция, Париж: Е.Л. ЧЕХОВ, тел. (10331) 47-49-28-05

© ООО "Издательство Машиностроение", 2010

© ООО "Машиностроение - Полет", 2010

СОДЕРЖАНИЕ

Пичхадзе К.М., Ефанов В.В., Мартынов М.Б. Создание
автоматических космических комплексов для научных
исследований Луны: вчера, сегодня, завтра 3
Ефремов А.В., Тяглик М.С. Разработка средств ото-
бражения информации, обеспечивающих высокоточное
пилотирование 9
Белоконов И.В., Травин В.С. Информационные техно-
логии в научных экспериментах в космосе
Шибанов А.А., Агарков А.Ф., Нарижный А.А.,
Пикалов В.П. Исследование реакции рабочего процесса
в камере сгорания на импульсное возмущение давления 27
Жираткова Л.А., Серьезнов А.Н. Устройство для иденти-
фикации дискомфортных режимов полета и оценка точно-
сти его работы
Заболотнова О.Ю. Синтез алгоритмов управления для
развертывания космической тросовой системы 36
Никитченко Ю.А. Система моментных уравнений для
многоатомных газов
Булычев В.Ю., Булычев Ю.Г., Манин А.П.,
Семенов И.Г. Коррекция траекторной информации
пассивной угломерной системы на основе инвариантов
движения ЛА

Журнал входит в перечень утвержденных ВАК РФ изданий для публикации трудов соискателей ученых степеней.

Мнение редакции не всегда совпадает с точкой зрения авторов статей. За содержание рекламных материалов ответственность несет рекламодатель. Плата с аспирантов за публикацию статей не взимается. Аннотации статей журнала и требования к оформлению представляемых авторами рукописей приведены на сайте издательства "Машиностроение" http://www.mashin.ru

Адрес редакции: 107076, Москва, Стромынский пер., 4 **Телефоны:** (499) 269-48-96; (499) 268-49-69; (499) 268-33-39

Факс: (499) 269-48-97; (499) 268-33-39 Адрес электронной почты: polet@mashin.ru Адрес в интернете: http://www.mashin.ru

AVIATION ROCKET TECHNOLOGY ◆ COSMONAUTICS

Journal of Russian Academy of Cosmonautics named after K.E. Tsiolkovsky and Academy of Aviation and Aeronautics Sciences

The journal is issued monthly Published since August 1998

G.V. NOVOZHILOV -

Editor-in-Chief (Aviation)

A.S. KOROTEYEV -

Editor-in-Chief (Rocket Technology and Cosmonautics)

L.A. GILBERG -

Deputy Editor-in-Chief

Editorial Board Members	Editorial Committee
V.V. ALAVERDOV	A.M. MATVEYENKO,
A.A. ALEKSANDROV	Chairman O.M. ALIFANOV
A.P. ALEKSANDROV	N.A. ANFIMOV
A.N.GERASHCHENKO	I.V. BARMIN V.E. BARSUK
V.G. DMITRIYEV	V.E. BARSUK
A.N. ZELIN	B.V. BODIN
B.I. KATORGIN	A.F. VOINOV
P.I. KLIMUK	M.B. GUZAIROV
A.A. LEONOV	V.A. DAVIDOV
V.A. LOPOTA	G.L. DEGTYAREV
A.M. MATVEYENKO	N.N. DOLZHENKOV
S.V. MIKHEYEV	Yu.S. ELISEYEV
N.F. MOISEEV	L.M. ZELENY
A.N.GERASHCHENKO V.G. DMITRIYEV A.N. ZELIN B.I. KATORGIN P.I. KLIMUK A.A. LEONOV V.A. LOPOTA A.M. MATVEYENKO S.V. MIKHEYEV N.F. MOISEEV A.F. MOROZENKO E.N. MAYASNIKOV	L.M. ZELENY A.N. KIRILIN
F.N. WITASNIKOV	V.A. KOBZEV V.A. KOMAROV
A.N. PERMINOV	A.A. KOROTEYEV
M.A. POGOSYAN	V.V. KRYMOV
A.N. PERMINOV M.A. POGOSYAN G.M. POLISHCHUK G.G. RAYKLINOV	I.N. LYSENKO
0.0. 10 (11(0)10)	A.P. MANIN
O.N. RUMYANTSEVA	V.A. MENSHIKOV T.A. MUSABAYEV
M.P. SIMONOV V.V. TERESHKOVA	V.E. NESTEROV
V.V. TERESHKOVA	K.M. PICHKHADZE
I.B. FEDOROV E.A. FEDOSOV	S.S. POZDNYAKOV V.A. POLETAYEV
V.V. KHARTOV	V.A. POLETYAKOV V.A. POLETYAVEV Y.A. RYZHOV G.G. SAYDOV
S.L. CHERNYSHEV	G.G. SAYDOV V.G. SVETLOV
S.L. CHERNYSHEV	A.N. SERYOZNOV
Executive secretaries	M.Yu.SMUROV
	V.P. SOKOLOV A V. SOLLOGUB
LN. MYMRINA	A.V. SOLLOGUB V.A. SOLOV'EV
D.Ya. TCHERNIS	A.I. TATUEV
of the journal I.N. MYMRINA D.Ya. TCHERNIS Editor Organizer	A.I. TATUEV B.E. TCHERTOK V.V. SHALAY V.A. SHATALOV
_a	V.A. SHATALOV
O.S. RODZEVICH	I.S. SHEVCHUK

Representatives of the journal:

Kazan: R.I. ADGAMOV, phone (843) 238-46-23 Roscosmos: A.A. VOROBIOV, phone (495) 975-45-86 Ministry of Defence of Russian Federation: A.V. DROBYSHEVSKYI, phone (495) 696-44-38 Ufa: O.B. SEVERINOVA, phone (3472) 73-07-23 France, Paris: E.L. TCHEHOV, phone (10331) 47-49-28-05

© Ltd Co "Mashinostroenie Publishing House", 2010

© Ltd Co "Mashinostroenie - Polyot", 2010

CONTENTS

Pichkhadze K.M., Efanov V.V., Martynov M.B. Development Of Automatic Space Complexes For The Moon Scientific	
Research: Yesterday, Today, Tomorrow	. 3
Efremov A.V., Tyaglik M.S. Developing Imaging Displays For Accurate Aircraft Flying	. 9
Belokonov I.V., Travin V.S. Information Technology In Scientific Research In Space	20
Shibanov A.A., Agarkov A.F., Narizhny A.A., Pikalov V.P. Researching Combustor Work Process Reactions To Pulse Pressure Disturbance	27
Zhiratkova L.A., Seryoznov A.N. Uncomfortable Flight Mode Identifier And Its Accuracy Control	32
Zabolotnova O.Yu. Synthesis Of Control Algorithms For Deployment Of Space Tether System	36
Nikitchenko Yu. A. The Moment Equations System Of Polyatomic Gases	43
Bulychev V.Yu., Bulychev Yu.G., Manin A.P., Semenov I.G. Trajectory Data Correction Of Passive Radial	5 0
System Based On Invariants Of Aircraft Motions	52

The journal is in the list of editions, authorized by the Supreme Certification Committee of the Russian Federation to publish the works of those applying for a scientific degree.

Viewpoints of authors of papers do not necessarily represent the Editorial Staff's opinion.

Post-graduates have not to pay for the publication of articles.

Annotations of magazine articles and features required of author manuscript desing are available at "Mashinostroenie Publishing House" Internet Site http://www.mashin.ru

Address of the editorial office: 107076, Moscow, Stromynsky Lane, 4

Phones: (499) 269-48-96; (499) 268-49-69; (499) 268-33-39

Fax: (499) 269-48-97; (499) 268-33-39 E-mail address: polet@mashin.ru Internet address: http://www.mashin.ru

УДК 629.7

Создание автоматических космических комплексов для научных исследований Луны: вчера, сегодня, завтра

(К 45-летию космической деятельности НПО им. С.А. Лавочкина)

К.М. Пичхадзе, В.В. Ефанов, М.Б. Мартынов

E-mail: vladimir_efanov@laspace.ru

В статье приведено описание автоматических космических комплексов, созданных и проектируемых коллективом НПО им. С.А. Лавочкина для фундаментальных и прикладных научных исследований Луны. Дано краткое описание решаемых ими научных задач. Представлены предложения по дальнейшей программе научных исследований Луны.

Ключевые слова: автоматический космический аппарат; научные космические исследования; программа исследований Солнечной системы, Луна.

K.M. Pichkhadze, V.V. Efanov, M.B. Martynov. Development Of Automatic Space Complexes For The Moon Scientific Research: Yesterday, Today, Tomorrow (Devoted to the 45th anniversary of the space activities of Lavochkin Association)

The article describes automatic space complexes developed and being designed by the Lavochkin Association team for fundamental and applied scientific research of the Moon. There is a short description of scientific issues being solved. The proposals for the further Moon scientific research program have been presented.

Key words: automated spacecraft; scientific space research; the research program of solar system; the Moon.

темприя Научно-производственного объединения им. С.А. Лавочкина насчитывает более 70 лет. Оно было организовано для создания истребительной авиации и возглавлялось выдающимся авиаконструктором Семеном Алексеевичем Лавочкиным. На предприятии были созданы одни из лучших истребителей Великой Отечественной войны Ла-5 и Ла-7.

Немалые успехи предприятием были достигнуты и в создании реактивной авиации. Так, на экспериментальном самолете "176" в 1948 г. впервые в мире в полете со снижением была достигнута скорость звука. С начала 1950-х гг. предприятию Правительством СССР поручается ракетная тематика. Были созданы зенитные управляемые ракеты "земля—воздух" В-300 и В-500 систем "Беркут" и "Даль", а также уникальная межконтинентальная крылатая ракета "Буря". На ней впервые была применена астронавигационная система управления. Это был первый робкий шаг к научно-техническому освоению космической техники.

В период интенсивного развития космонавтики, когда стало ясно, что сосредоточение всех направлений на одном предприятии нерационально и неэффективно, по предложению С.П. Королева ряд направлений были переданы другим организациям. Так, в частности, Постановлением ЦК

ПИЧХАДЗЕ
Константин Михайлович —
первый заместитель генерального конструктора и
генерального директора
ФГУП "НПО им. С.А. Лавочкина", профессор, доктор техн. наук

ЕФАНОВ
Владимир Владимирович —
заместитель руководителя
ОКБ ФГУП "НПО
им. С.А. Лавочкина", по
науке, профессор,
доктор техн. наук

МАРТЫНОВ Максим Борисович — заместитель генерального конструктора — руководитель ОКБ ФГУП "НПО им. С.А. Лавочкина", кандилат техн. наук

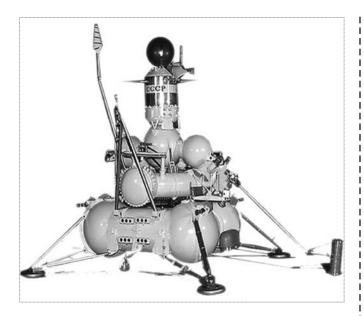


Рис. 1. Общий вид КА "Луна-16"

КПСС и Совмина СССР завод им. С.А. Лавочкина был передан в ведение Министерства общего машиностроения. Главным конструктором назначен Г.Н. Бабакин. Предприятие было определено головным в отрасли по созданию автоматических космических аппаратов для фундаментальных научных исследований Луны, планет Солнечной системы и космического пространства.

Интеллектуальный и производственный потенциал ОКБ и опытного завода, опыт работы как в авиационном, так и в ракетном направлениях, приверженность проектно-конструкторской школе члена-корреспондента АН СССР С.А. Лавочкина позволили ускоренно и эффективно приступить к созданию космической техники.

В феврале 1966 г. был запущен в космос созданный в НПО им. С.А. Лавочкина КА "Луна-9", совершивший первую мягкую посадку на Луну, через два месяца стартовала с Земли станция "Луна-10" (первый искусственный спутник Луны). Вплоть до КА "Луна-14" запуски осуществлялись РН "Молния". Появление более мощной ракеты "Протон" позволило перейти на аппараты со значительно большими интеллектуальными и исследовательскими возможностями, позволяющими комплексно решать научные задачи.

Были созданы более совершенные КА следующего поколения, предназначенные для доставки

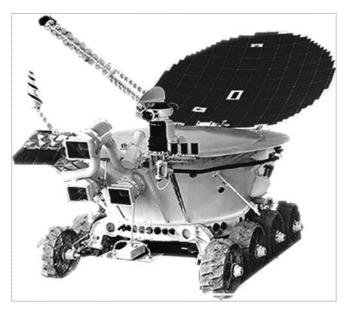


Рис. 2. Общий вид мобильной лаборатории "Луноход-1"

на Землю образцов лунного грунта, для контактных исследований различных районов поверхности с помощью дистанционно управляемых луноходов, а также изучения Луны и космического пространства с орбиты ИСЛ. Задача по доставке на Землю лунного грунта была решена КА "Луна-16", "Луна-20", "Луна-24", мобильные автономные лаборатории "Луноход-1" и "Луноход-2" были доставлены к месту работы космическими аппаратами "Луна-17" и "Луна-21". Общие виды КА "Луна-16" и мобильной лаборатории "Луноход-1" показаны на рис. 1 и 2.

При создании указанных КА на НПО им. С.А. Лавочкина была впервые применена концепция построения объектов на основе унифицированных (базовых) космических модулей (платформ). Был создан орбитально-посадочный блок - посадочная платформа многоцелевого назначения. Он доставлял на Луну или в окололунное пространство различные полезные нагрузки: луноходы; взлетные ракеты с грунтозаборными устройствами, возвращаемыми на Землю аппаратами; ИСЛ для дистанционного зондирования Луны и др. Универсальной также корректирующе-тормозная являлась тельная установка. Этой хорошо зарекомендовавшей себя концепции мы придерживаемся в современных и перспективных космических проектах.

В настоящее время все ведущие космические страны вносят в свои перспективные проекты углубленное исследование Луны. Мотивируется это целесообразностью начала прикладных исследований по освоению лунных ресурсов и созданию как внеземных баз для пилотируемых полетов на Марс, так и полигонов для научных целей, особенно астрофизических.

По нашему мнению, на начальном этапе до колонизации Луны человеком ключевую роль должны играть автоматические средства. В соответствии с Федеральной космической программой 2005-2015 гг. в части реализации предложений РАН по фундаментальным научным исследованиям Луны НПО им. С.А. Лавочкина разрабатывает космические комплексы для нескольких экспедиций с различными научными целями. Это проекты "Луна-Глоб" и "Луна-Ресурс" с реализацией в 2013-2014 гг., что обеспечит возможность координации с лунными проектами других стран. Использование международной кооперации позволит не только повысить научную отдачу, но и оптимизировать временные и финансовые затраты.

Помимо этого на дальнейшую перспективу целесообразно проработать проекты по контактным исследованиям в приполярном районе Луны с помощью многофункционального лунохода, отбору из определенных предварительно исследованных мест образцов лунного грунта и доставке их на Землю, по созданию на Луне научно-исследовательского полигона для отработки технологических методик переработки местного грунта, выделения из него определенных элементов, доставке их на Землю, проведению широкого спектра научных исследований, в том числе астрофизических. Особенно интересно расположить радиотелескоп на обратной стороне Луны. Указанные программы в настоящее время находятся на стадии согласования, а по самим этим проектам в НПО им. С.А. Лавочкина ведется предпроектная проработка, которая показывает, что при благоприятных условиях их реализация возможна в период 2017-2020 гг.

Разработка перспективных лунных проектов осуществляется на принятом на предприятии еще при создании автоматических KA, начиная с аппарата "Луна-15", принципе использования унифицированных модулей.

На основании изложенного можно сформулировать перспективную национальную программу исследования Луны автоматическими комплексами, включающую следующие проекты:

- "Луна-Глоб" широкомасштабные исследования с орбиты ИСЛ и на поверхности Луны;
- "Луна-Ресурс" контактные исследования приполярных областей с помощью посадочных станций:
- "Луна-Грунт" доставка на Землю отобранных в определенных местах образцов лунного грунта:
- "Лунный полигон" проведение долгосрочных научных и технологических исследований.

Представим эти проекты подробнее.

В ходе реализации проекта "Луна-Глоб" предполагается провести широкий спектр экспериментов с орбиты ИСЛ и на ее поверхности с широкомасштабной разведкой ресурсов в приполярных областях и рекогносцировкой мест для последующих посадочных экспедиций.

Космический комплекс "Луна-Глоб" состоит из орбитального, посадочного аппаратов и переходных устройств—адаптеров.

С орбитального аппарата проводится картографирование минералогического состава Луны, картирование распределения воды на поверхности, исследование структуры подповерхностных слоев (до глубины в несколько километров), детектирование льда на глубине до сотен метров, измерение магнитного и электрического полей, исследование окололунной космической плазмы и другие исследования. Особое место в орбитальном научном комплексе занимает астрофизический радиоволновой детектор "ЛОРД" (лунный орбитальный радиоволновой детектор) для изучения космических лучей и нейтрино ультравысоких энергий (более 5.10^{13} MэB). Масса научного оборудования орбитального аппарата составляет 120 кг, время наблюдений — около трех лет.

Космический аппарат "Луна-Глоб" разрабатывается на базе орбитально-перелетного модуля КА "Фобос-Грунт". Общий вид описываемого КА представлен на рис. 3, а орбитальный аппарат в рабочей конфигурации — на рис. 4.

Запуск КА "Луна-Глоб" на траекторию полета к Луне обеспечивается ракетой космического назначения "Союз" с разгонным блоком "Фрегат". После выведения осуществляется автономный полет к Луне.

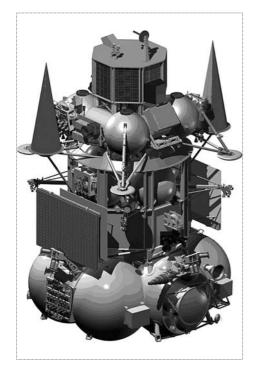
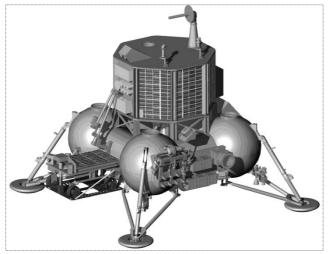


Рис. 3. Общий вид КА "Луна-Глоб"

Рис. 4. Орбитальный аппарат "Луна-Глоб" в рабочей конфигурации

Пока рассматривается такая схема полета. В течение первого года КА "Луна-Глоб" функционирует на окололунной круговой полярной орбите высотой 200 км и периодом обращения 2 ч. Аппарат на этом этапе осуществляет сбор и передачу на Землю информации с посадочного модуля и проведение научных исследований в основном комплексом дистанционного зондирования поверхности Луны.


Предусматривается также, что дважды в течение года аппарат будет переводиться на несколько суток на орбиту с пониженным (50 км) перицентром для проведения детального изучения поверхности Луны.

Основными инструментами при этом являются телевизионная аппаратура и подпочвенный радар.

После проведения указанных исследований КА переводится на круговую полярную орбиту высотой 500 км и периодом обращения 3 ч. На этой орбите продолжается дистанционное зондирование поверхности Луны, исследование межзвездного газа, окололунной космической плазмы, магнитного и электрического полей, начинаются уникальный эксперимент "ЛОРД" и другие исследования.

Подробнее об эксперименте "ЛОРД", который использует Луну как естественный детектор для ретрансляции космических лучей (КЛУВЭ) и нейтрино ультравысоких энергий (НУВЭ). Поток их чрезвычайно мал и составляет одну частицу на 1 км² в столетие. Для их исследования на Земле строятся гигантские детекторы, располагающиеся на площади в несколько тысяч км².

В космическом эксперименте "ЛОРД" используется принципиально другой подход (действительно инновационный), который должен дать прорывной результат в этих исследованиях. В качестве мишени для взаимодействия КЛУВЭ и НУВЭ предлагается использовать огромный объем вещества Луны. Регистрация радиосигналов с борта лунного спутника дает преимущества по сравнению с регистрацией на Земле благодаря более благоприятным фоновым условиям. Результаты этого эксперимента позволят разрешить существующие противоречия в различных наземных исследованиях по регистрации КЛУВЭ и дадут возможность лучше понять механизмы ускорения в сверхмощных ускорителях Вселенной, ультравысокая энергия которых не доступна земным ускорителям. Этот эксперимент дает уникальные возможности для исследования физиче-

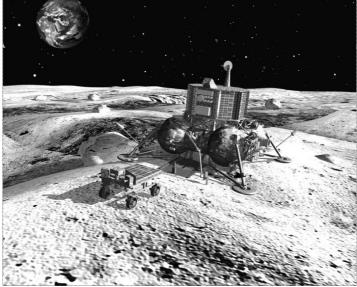


Рис. 5. Общий вид КА "Луна-Ресурс"

ских явлений ультравысоких энергетических масштабов.

Следующий проект "Луна-Ресурс" реализуется совместно с Индийским космическим агентством. Указанный космический комплекс включает индийский космический аппарат, российский посадочный космический аппарат с индийским малогабаритным луноходом. Запуск будет осуществляться индийской ракетой космического назначения GSLV-2 с космодрома Шрихарикота-Шар на высокоэллиптическую орбиту ИСЗ, далее с помощью двигательной установки переводится на траекторию полета к Луне.

Затем осуществляется разделение космических аппаратов и их автономный перелет к Луне. После посадки луноход съезжает на поверхность Луны и проводит исследования в соответствии с программой, включающей проведение контактных исследований в районе южного полюса Луны (анализ грунта); поиск водяного льда при помощи нейтронного детектора; изучение магнитных аномалий на поверхности Луны.

Общий вид посадочного аппарата "Луна-Ресурс" представлен на рис. 5.

Следующей актуальной научной задачей является доставка на Землю образцов вещества Луны из предварительно выбранных районов. Для ее решения в НПО им. С.А. Лавочкина прорабатывается проект "Луна-Грунт".

В качестве таких районов рассматриваются приполярные районы, где, как показывают дис-

танционные исследования, содержатся залежи водяного льда, и места на обратной стороне Луны.

По проекту "Луна-Грунт" предусматривается создание унифицированной посадочной платформы с достаточно большой несущей способностью, многофункционального лунохода со значительным радиусом действия, взлетной ракеты с Луны, возвращаемого на Землю аппарата, а также технологии обеспечения высокоточной посадки на маяк, расположенный на Луне.

Реализовать задачи проекта "Луна-Грунт" предлагается в два этапа:

экспедиция по доставке на Луну лунохода; экспедиция по доставке на Луну взлетной ракеты для транспортировки на Землю образцов грунта, собранных луноходом.

В первой экспедиции с многофункциональным луноходом осуществляется разведка запасов и распределенности химических элементов, уточнение местного рельефа, забор в различных местах и с разной глубины образцов лунного грунта, отработка основных технических средств для последующих экспедиций по развертыванию лунной базы и др.

При реализации этой экспедиции следует иметь в виду особенности управления луноходом в приполярных кратерах и на обратной стороне Луны (отсутствие прямой радиовидимости). Целесообразно в таком космическом комплексе иметь лунный спутник-ретранслятор.

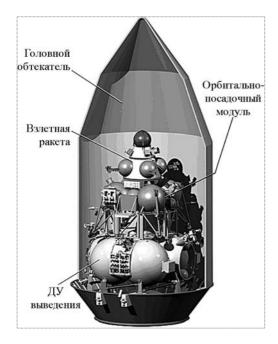


Рис. 6. Размещение КА "Луна-Грунт" под головным обтекателем РКН

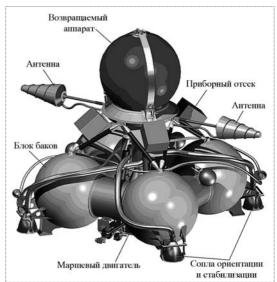


Рис. 7. Общий вид лунной взлетной ракеты

Во второй экспедиции со взлетной ракетой осуществляется доставка на Землю образцов лунного грунта, отработка технологии высокоточной посадки на маяк, продолжение отработки основных технических средств для последующих экспедиций по развертыванию лунной базы и др.

На рис. 6 представлено размещение космического комплекса "Луна-Грунт" под головным обтекателем РКН.

На рис. 7 представлен общий вид взлетной ракеты.

Завершающим проектом предлагаемой программы изучения Луны автоматическими космическими комплексами является создание лунного полигона. На нем предусматривается развертывание автоматических мобильных средств лунных научных и технологических комплексов для реализации научных и прикладных задач, в том числе для реализации последующих пилотируемых экспедиций.

Для строительства полигона предлагается использовать следующие технические средства: базовые транспортные средства; искусственные спутники Луны; лунные служебные, научные и технологические модули. Значительный научный интерес представляет создание автоматического радиотелескопа на Луне, состоящего из отдельных приемников радиоизлучения, распределенных по ее поверхности площадью несколько десятков квадратных километров. Идеальное ме-

сто для него — обратная сторона Луны. Точность измерений таким астрофизическим инструментом будет весьма высока благодаря отсутствию помех: в частности, отсутствует электромагнитное поле Земли.

В заключение необходимо отметить, что анализ рассмотренной перспективной программы исследования Луны автоматическими космическими средствами показывает реальные желания и возможности отечественной космонавтики стать лидером в исследовании Луны в близкой перспективе (5...10 лет).

Библиографический список

- 1. **Автоматические** космические аппараты для фундаментальных и прикладных научных исследований / под ред. Г.М. Полищука, К.М. Пичхадзе. М.: МАИ-ПРИНТ, 2010. 659 с.
- 2. Зеленый Л.М., Захаров А.В., Ксанфомалити Л.В. Исследование Солнечной системы, состояние и перспективы // Успехи физических наук. 2009, 179. № 10. С. 1118—1140.
- 3. Полищук Г.М., Пичхадзе К.М., Ефанов В.В., Мартынов М.Б. Космические модули комплекса "Фобос-Грунт" для перспективных межпланетных станций // Вестник ФГУП НПО им. С.А. Лавочкина. 2009. № 2. С. 3—8.
- 4. **Полищук Г.М.** Перспективные российские космические работы для научных исследований // Сб. "Пятьдесят лет космических исследований". М.: Физматлит, 2009. С. 221–238.
- 5. Полищук Г.М., Пичхадзе К.М., Ефанов В.В. Реализация концепции создания перспективных космических комплексов для научных исследований // Общероссийский научно-технический журнал "Полет". 2008. № 8. С. 47—54.
- 6. Lukianchikov A., Martynov M.,. Zaitseva O. et al. Russian robotic lunar exploration program // 59th International Astronautical Congress, 29 September 3 October 2008. Glasgow. Scotland. UK. Paper number: IAC 08-A3.2.A12.

УДК 629.7

Разработка средств отображения информации, обеспечивающих высокоточное пилотирование

А.В. Ефремов, М.С. Тяглик

E-mail: pvl@mail.ru

Обсуждаются результаты математического моделирования системы "самолет—летчик" и экспериментальных исследований, которые позволили обосновать алгоритмы для системы отображения информации, позволяющей улучшить процесс ручного пилотирования при выполнении задач посадки, облета рельефа местности и дозаправки самолета топливом в воздухе.

Ключевые слова: математическое моделирование; посадка; дозаправка; взлетно-посадочная полоса; безопасность полета; скорость; рельеф.

A.V. Efremov, M.S. Tyaglik. Developing Imaging Displays For Accurate Aircraft Flying

The article reviews the results of the mathematical modeling of an aircraft-pilot system and experimental research, which helped substantiate algorithms for the image display systems, ensuring better manual piloting at landing, terrain following and aerial refueling.

Key words: mathematical modeling; landing; aerial refuelin; runway; flight safety; flight speed relief.

фа местности, дозаправку топливом в воздухе и посадку. Все эти задачи характеризуются необходимостью управления линейными координатами самолета (высотой, боковым отклонением). В продольном канале при управлении высотой полета передаточная функция объекта управления имеет второй, а в случае отслеживания боковой координаты третий порядок астатизма. Известно, что точное управление объектом с передаточной функцией, имеющей второй порядок астатизма, является для летчика сложной задачей, требующей введения значительных опережающих действий, а управление объектом, имеющим третий порядок астатизма, вообще невозможно. Поэтому летчик вынужден использовать дополнительную информацию о вертикальной скорости, углах тангажа, рыскания и крена, образуя дополнительные контуры, с тем чтобы обеспечить устойчивость замыкаемой им системы и требуемое качество ее функционирования.

Для улучшения качества выполнения отдельных задач (например, задач дозаправки) системы управления современных самолетов содержат обратные связи по углам крена и тангажа, что уменьшает астатизм объекта управления по линейным координатам.

Для упрощения процесса пилотирования в других задачах (посадки, облета рельефа местности) широкое распространение получило применение дирек-

ЕФРЕМОВ
Александр Викторович — декан, заведующий кафедрой Московского авиационного института, доктор техн. наук

ТЯГЛИК
Михаил Сергеевич — аспирант Московского авиационного института

торного прибора, формирующего сигналы, улучшающие динамику системы "дисплей—самолет" и в конечном итоге упрощающие процесс пилотирования. Введение директорного прибора не изменяет содержания самой задачи отслеживания. Она по-прежнему остается компенсаторной, в которой летчик вынужден отслеживать сигнал рассогласования, стремясь удержать его в нулевом положении или в заданном диапазоне.

В последние годы был проведен ряд исследований, посвященных разработке перспективных систем визуализации, в которых предлагается вводить элементы трехмерной реальности, а также дополнительные директорные сигналы, отображающие прогнозную информацию. Результаты, полученные в том числе и авторами настоящей статьи, демонстрируют возможности таких систем улучшать точность пилотирования [1, 2]. В настоящей статье делается попытка обобщения методики построения перспективных систем отображения информации для различных задач пилотирования.

Постановка задачи

Рассматриваются три задачи, требующие высокоточного пилотирования: посадка, облет рельефа местности и дозаправка самолета в воздухе. В первых двух задачах при управлении в продольном канале общим является стремление летчика точно отслеживать программную траекторию $H_{\rm пp}(t)$. Если в задаче посадки такой программной траекторией является глиссада $H_{\rm rn}(t) = H_{\rm np}(t)$, то в задаче облета местности это предварительно сформированная траектория $H_{\rm np}(t)$, обеспечивающая возможно близкое приближение траектории к рельефу местности исходя из ограничений на знакопеременные пере-

грузки, углы наклона вектора скорости, минимальную высоту полета и вертикальную скорость. Таким образом, в этих задачах необходимо отслеживать условия пилотирования, при которых рассогласование e(t) между программной траекторией $H_{\rm пp}(t)$ и текущей высотой H(t)было бы минимально,

$$e(t) = H(t) - H_{\text{mp}}(t).$$
 (1)

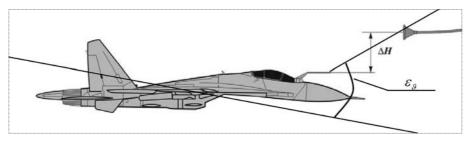
Динамика изменения высоты полета описывается следующей передаточной функцией:

$$\frac{H(p)}{X_{\rm B}(p)} = \frac{K_{\rm c} n_{y}^{\alpha} V}{p^{2} (p^{2} + 2 \xi \omega_{\rm K} p + \omega_{\rm K}^{2})}, \qquad (2)$$

имеющей второй порядок астатизма. Как известно, процесс точного управления таким объектом крайне затруднителен для летчика.

В третьей задаче, задаче дозаправки, летчик управляет углом визирования оси самолета (рис. 1)

$$\varepsilon_{\vartheta}(t) \cong \vartheta + \frac{H(t)}{L},$$


где L — расстояние между заправочной штангой и конусом. При этом летчик стремится минимизировать величину

$$e(t) = \varepsilon_{\vartheta}(t) - \frac{H_{\text{np}}(t)}{L}, \qquad (3)$$

где $H_{\text{пр}}$ — вертикальная координата конуса.

Передаточная функция самолета по углу визирования є имеет вид

$$\frac{\varepsilon_{\vartheta}(p)}{X_{\scriptscriptstyle B}(p)} = \frac{K_{\scriptscriptstyle C}(p^2 + \overline{Y}^{\,\alpha}p + \overline{Y}^{\,\alpha}\frac{V}{L})}{p^2(p^2 + 2\,\xi\omega_{\scriptscriptstyle K}p + \omega_{\scriptscriptstyle K}^2)}.$$
 (4)

При малых расстояниях до заправочного конуса, когда V/L>>1, эта передаточная функция приближенно соответствует передаточной функции

$$W_{\rm c} \cong \frac{K_{\rm c} \, \overline{Y}^{\, \alpha} \, \frac{V}{L}}{p^2 \, (p^2 + 2 \, \xi \omega_{\rm k} \, p + \omega_{\rm k}^2)},$$

по структуре схожей с (2). Коэффициент усиления этой передаточной функции на малых расстояниях становится большим, что усложняет управление объектом. Для его упрощения летчик переходит к управлению высотой полета [3], что, как указывалось выше, является непростой задачей, хотя и с постоянным коэффициентом усиления.

Улучшение динамики объекта управления может быть достигнуто разными способами. Традиционно это осуществляется с помощью системы управления полетом, изменяющей знаменатель этой передаточной функции. В настоящей статье улучшение динамики объекта предлагается достигнуть путем изменения числителя N(p) передаточной функции $W_{\rm c} = \frac{N\left(p\right)}{D\left(p\right)}$ для любой из рас-

сматриваемых задач пилотирования. Это может быть реализовано путем введения проекции прогнозируемого вектора скорости, характеризуемого углом $\theta_{np}(t)$, на скользящую со скоростью полета самолета плоскость, находящуюся от него на расстоянии L и отображаемую на индикаторе лобового стекла (ИЛС). Выбор расстояния L предлагается осуществить путем минимизации текущей ошибки рассогласования e(t), которая в задаче посадки или облета рельефа местности определяется выражением (1), а в задаче дозаправки — выражением (3). Решение задачи при проведении

математического моделирования осуществляется путем минимизации соответствующих дисперсий ошибок. Помимо этого для улучшения качества управления в статье предлагается отображать на ИЛСе трехмерный коридор допустимых отклонений от программной траектории, что позволяет летчику увидеть положение самолета в пространстве и перейти от задачи компенсаторного слежения к задаче предвидения с преследованием. Целесообразность такого перехода показана в ряде работ [4, 5].

Анализ влияния дальности (времени) прогноза на свойства системы "самолет-летчик"

Для решения задач выбора оптимального расстояния $L_{\rm пр}$ или времени прогноза ($T_{\rm пр}=L_{\rm пр}/V$) необходимо учитывать его влияние на следующие переменные: динамику объекта управления $W_{\rm c}(p)$, динамическую связь координаты, определяющей качество пилотирования, с выходной координатой объекта управления, а также на воспринимаемый летчиком входной сигнал.

Ниже определяются эти переменные для каждой из исследуемых задач, а также рассмотрено влияние на них параметра $L_{\rm np}$.

Найдем передаточную функцию объекта управления. Для этого прежде всего необходимо получить выражение для прогнозного угла наклона траектории θ_{np} .

Из рис 2 видно, что
$$\theta_{\rm np}=\dot{\theta}\; \frac{T_{\rm np}}{2}+\theta$$
 , где
$$T_{\rm np}=\frac{L_{\rm np}}{V}.$$

На положение проекции прогнозируемого вектора $\theta_{\rm пp}$ на прогнозное окно, находящееся на расстоянии $L_{\rm пp}$ (рис. 3), влияет также и изменение положения самолета по высоте.

При этом летчик должен управлять углом визирования вектора скорости $\epsilon_{_{\theta}}=\theta_{_{\rm np}}+\frac{\Delta\,H}{L_{_{\rm np}}},$ яв-

ляющимся выходной координатой объекта управления. Структурная схема, отражающая

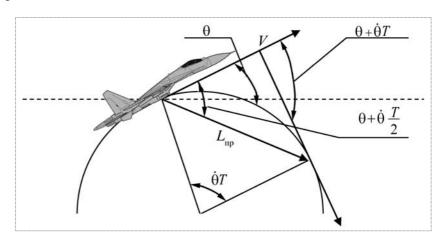


Рис. 2

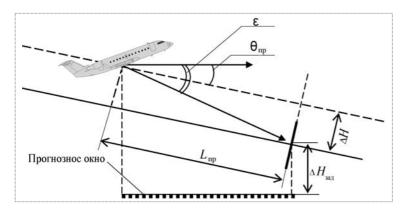


Рис. 3

рассматриваемую задачу, может быть представлена схемой, приведенной на рис. 4.

Отсюда можно получить следующее выражение для передаточной функции объекта управления:

$$W_{c} = \frac{\varepsilon_{\theta}(p)}{\delta_{B}(p)} = \frac{K_{c}(T_{np} p^{2} + 2p + \frac{2}{T_{np}})}{2p^{2}(p^{2} + 2\xi\omega p + \omega^{2})}.$$
 (5)

При увеличении $T_{\rm пр}$ при $T_{\rm пр} >> 1$ передаточная функция прогноза угла наклона траектории может быть представлена в следующем упрощенном виде:

$$W_{\rm c} = \frac{\varepsilon_{\rm \theta}(p)}{\delta_{\rm B}(p)} \approx \frac{T_{\rm np} p + 2}{2 p (p^2 + 2 \xi \omega p + \omega^2)}.$$

Таким образом, увеличение времени прогноза приводит к уменьшению порядка астатизма объ-

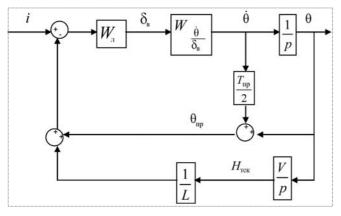


Рис. 4

екта управления, а следовательно, к улучшению точности управления.

При уменьшении времени прогноза передаточная функция $W=rac{\epsilon_{\, heta}(p)}{\delta_{_{\, extrm{B}}}(p)}$ принимает вид

$$W_{\rm c} = \frac{\varepsilon_{\rm \theta}(p)}{\delta_{\rm p}(p)} \approx \frac{p + \frac{1}{T_{\rm np}}}{p^2 (p^2 + 2 \xi \omega p + \omega^2)}.$$

При этом происходит усложнение динамики в системе "дисплей—самолет", так как динамика объекта определяется астатизмом второго порядка.

В работе [3] показано, что, выполняя задачу дозаправки топливом в воздухе, находясь на малых расстояниях до заправочного конуса L, летчик так же, как и в предыдущих задачах, переходит к управлению высотой полета. Переход в задаче управления от координаты ε_3 к ε_6 , при которой проекция вектора скорости проецируется на отображаемое на ИЛСе окно, находящееся на расстоянии $L_{\rm пр}$, обеспечивает летчику более простые условия пилотирования по сравнению со случаем управления самолетом по высоте.

Параметры L и $L_{\rm пp}$ влияют также на передаточную функцию $W_{\rm c}$, определяющую связь координаты качества процесса пилотирования (текущей высоты $H_{\rm тek}$ в задачах посадки и облета рельефа и $\varepsilon_{\,_{9}}$ в задаче дозаправки) с выходной координатой объекта управления $\varepsilon_{\,_{0}}$. В задачах посадки и облета рельефа такая динамическая связь, определяющаяся связью текущей высоты с прогнозным углом визирования, приближенно может быть представлена как

$$W_{\rm c} = \frac{H_{\rm \tiny Tex}(p)}{\varepsilon_{\rm \tiny \theta}(p)} = \frac{2 V}{T_{\rm \tiny rmp} p^2 + 2 p + \frac{2}{T_{\rm \tiny Imp}}}.$$

Передаточная функция $W_{\mathrm{c}} = \frac{H_{\mathrm{тек}}\left(p\right)}{\varepsilon_{\,\mathrm{\theta}}(p)}$ при

уменьшении значения времени прогноза $T_{\rm пр}$ приближенно может быть представлена в виде

$$W_{\rm c} = \frac{H_{\rm Tek}(p)}{\varepsilon_{\theta}(p)} \approx \frac{V}{p + \frac{1}{T_{\rm IID}}}.$$

Таким образом, при малом $T_{\rm пp}$ передаточная функция $W_{\rm c} = \frac{H_{\rm тек}\left(p\right)}{\varepsilon_{\,_{
m H}}(p)}$ не содержит дополни-

тельного интегрирующего звена, а следовательно, повышенного астатизма, что должно привести к улучшению отслеживания текущей высоты.

Увеличение $T_{\rm пр}$ приводит к усилению отставания в развитии высоты по отношению к $\epsilon_{\, \theta}$. Действительно, $H_{\rm тек}$ и $\epsilon_{\, \theta}$ связаны соотношением

$$W_{\rm c} = \frac{H_{\rm TEK}(p)}{\varepsilon_{\theta}(p)} \approx \frac{V}{p(\frac{T_{\rm np}}{2}p+1)}.$$

Нарушение гармонизации между этими двумя переменными при больших значениях $T_{\rm пр}$ может сопровождаться ухудшением точности в отслеживании $H_{\rm тек}$ несмотря на рост точности в отслеживании $\varepsilon_{\rm \theta}$. Для устранения этого недостатка необходимо введение дополнительной информации, позволяющей летчику вводить коррекцию по высоте. В качестве такой информации целесообразно использовать трехмерный коридор допустимых отклонений $\Delta H_{\rm зад}$, $\Delta Z_{\rm зад}$, позволяющий оценить текущее линейное рассогласование самолета относительно программной траектории.

В задаче дозаправки динамическая связь координаты, определяющей качество пилотирования, с выходной координатой объекта управления имеет вид

$$W_{c} = \frac{\varepsilon_{\vartheta \text{ TEK}}(p)}{\varepsilon_{\vartheta}(p)} = \frac{p^{2} + \overline{Y}^{\alpha} p + \frac{V}{L_{np}} \overline{Y}^{\alpha}}{\frac{T_{np}}{2} p^{2} + p + \frac{1}{T_{np}}}.$$
 (6)

При малых расстояниях до конуса и больших величинах $T_{\rm np}$ выражение (6) трансформируется в следующее:

$$W_{\rm c} = \frac{\varepsilon_{\,9\,\,{\rm rek}}\,(p)}{\varepsilon_{\,\theta}\,(p)} \cong \frac{\frac{V}{L_{\rm np}}\,\overline{Y}^{\,\alpha}}{p\,(\frac{T_{\rm np}}{2}\,\,p+1)}\,.$$

Очевидно, что реакция объекта управления по координате $\varepsilon_{9 \text{ тек}}(p)$ характеризуется запаздыванием по отношению к координате $\varepsilon_{\theta}(p)$. В этой задаче также требуется гармонизация реакций между сигналами.

При малых величинах $T_{\rm np}$ и малых расстояниях до конуса выражение (6) можно записать в виде

$$W_{\rm c} = rac{arepsilon_{
m 9 \, Tek} \, (p)}{arepsilon_{
m \theta} (p)} \cong rac{rac{V}{L_{
m np}} \, \overline{Y}^{\, lpha}}{p + rac{1}{T_{
m np}}} \, .$$

В этом случае передаточная функция $W_{\rm c}$ не содержит дополнительного интегрирующего звена, а следовательно, повышенного астатизма.

Помимо влияния дальности прогноза $L_{\rm пp}$ на динамику объекта управления на динамическую связь координаты, определяющей качество выполнения пилотирования, с выходной координатой объекта управления, она также влияет и на воспринимаемый летчиком входной сигнал $i\ (t) = \frac{H_{\rm зад}}{L_{\rm пp}}.$

Увеличение $T_{\rm пp}$ приводит к уменьшению дисперсии воспринимаемого летчиком входного сигнала. При этом необходимо учитывать, что на величине дисперсии входного сигнала $\sigma_i^2 = \frac{\sigma_{\Delta H}^2}{(V T_{\rm np})^2}$ начинает сказываться зона нечув-

ствительности глаза, что приводит к росту ошибки.

Таким образом, результаты анализа указывают на то, что величина $T_{\rm np}$ определяется некоторой оптимальной величиной, при которой отклонение рассогласования по высоте или дисперсии высоты полета будет минимальным.

В задаче дозаправки топливом в полете $T_{\rm np}$ выбирается не из условия минимума дисперсии ошибки при отслеживании текущей высоты, как в предыдущих задачах, а из условия минимума

дисперсии ошибки при отслеживании текущего угла визирования.

Методика проведения исследований

В работе, описываемой в настоящей статье, для нахождения оптимального значения $T_{\rm пp}$ проводилось математическое моделирование, результаты которого проверялись в процессе экспериментальных исследований.

Математическое моделирование

Для нахождения оптимального значения времени прогноза $T_{\rm np}$ в каждой из задач пилотирования средствами математического моделирования проводились:

- 1. Выбор структуры и параметров модели управляющих действий летчика.
- 2. Определение входного сигнала в системе "самолет—летчик".
- 3. Определение оптимальной величины $T_{\rm np}$. Данный алгоритм реализовывался с использованием системы MatLab и ее пакета Simulink.

Выбор структуры и параметров модели управляющих действий летчика. На рис 5 представлена блок-схема модели управляющих действий летчика, используемой в описываемых в настоящей статье исследованиях для проведения математического моделирования. Здесь спектральная плотность $S_{\tilde{n}_e \ \tilde{n}_e} = \frac{0,01 \ \pi}{K_{\tilde{n}_e}^2}$, $S_{\tilde{n}_e \ \tilde{n}_e} = \frac{0,01 \ \pi}{K_{\tilde{n}_e}^2}$, где

$$K_{\widetilde{n}_e} = \mathrm{erf}\left(rac{\Delta}{\sigma_e}
ight), \;\; K_{\widetilde{n}_{\acute{e}}} = \mathrm{erf}\left(rac{\Delta}{\sigma_{\acute{e}}}
ight) -$$
коэффици-

енты статистической лианеризации; $e^{-p\tau}$ — звено, учитывающее запаздывание в восприятии ин-

формации ($\tau=0,2$); $W_{\text{кс}}=\frac{K_{n}p^{2}}{T_{n}^{2}\ p^{2}+2T_{n}\ p+1}$ — блок, характеризующий адаптацию летчика к кинестетической информации; $W_{\text{нм}}=\frac{\omega_{\text{нм}}^{2}}{p^{2}+2\xi_{\text{нм}}\ \omega_{\text{нм}}\ p+\omega_{\text{нм}}^{2}}$ — динамика нейромышечной системы ($\omega_{\text{нм}}=12$; $\xi_{\text{нм}}=0,1$).

Выбор параметров модели управляющих действий летчика ($K_L = \alpha$, $T_L = \frac{\alpha}{\beta}$, K_n , T_n) осу-

ществлялся путем минимизации дисперсии ошибки при отслеживании сигнала ϵ_{θ} . Данная математическая модель управляющих действий летчика является модификацией известной модели Хесса [6]. Модифицированная структурная модель, предложенная в МАИ на основе анализа многочисленных экспериментов, отличается от базовой тем, что в ней:

- использована усложненная модель канала адаптации визуальной информации;
 - введена иная процедура выбора параметров;
- введен в рассмотрение шум летчика, учитывающий эффект зоны нечувствительности восприятия ошибки и ее скорости;
- изменен блок формирования управляющих действий летчика (кинестетическая обратная связь не охватывает нейромышечный блок).

Из приведенных на рис. 6 частотных характеристик управляющих действий летчика, где используются обозначения \blacksquare — модель Хесса; \triangle — модифицированная модель Хесса; \square — эксперимент, видно, что модифицированная модель летчика Хесса в областях высоких и низких частот

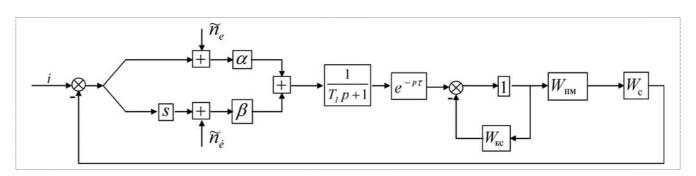


Рис. 5

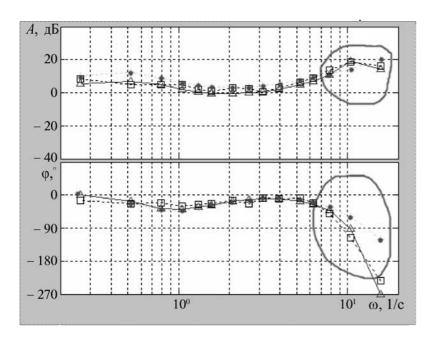


Рис. 6

демонстрирует лучшую сходимость с экспериментом по сравнению с исходной моделью.

Входной сигнал в системе "самолет-летчик". При проведении математического моделирования считалось, что входной сигнал является случайным. Его спектральная плотность выбиралась из условия близости к сигналу, типичному для той или иной задачи пилотирования. Для задачи посадки таким типичным сигналом является реакция самолета по высоте на действие порывов ветра, в задаче дозаправки – движение заправочного конуса, а в задаче облета рельефа местности – программная траектория облета рельефа. При исследованиях были получены и такие типичные траектории, обработка которых позволила найти выражение для спектральной плотности входного сигнала. Для всех исследовавшихся задач это выражение имеет общий вид:

$$S_{ii} = \frac{K^2}{\left(\omega^2 + \omega_i^2\right)^2},$$

где для задачи дозаправки и посадки $\omega_i = 0.5 \text{ c}^{-1}$, а в задаче облета рельефа местности $\omega_i = 0.2 \text{ c}^{-1}$. Дисперсия входного сигнала, воспринимаемого летчиком на поверхности, удаленной от него на

расстояние $L_{\text{пр}}$, связана с дисперсией изменения высоты следующим образом:

$$\sigma_i^2 = \frac{\sigma_{\Delta H}^2}{(L_{\rm np})^2}.$$

Исследовалось также влияние параметра ω_i на выбор оптимального значения $T_{\rm np}$.

Определение оптимального значения времени прогноза. Результаты расчетов, выполненных при исследованиях задачи посадки, приведены на рис. 7, где $(\sigma_{\theta}^2)_{\max}$ — максимальная дисперсия среди всех вычисленных σ_{θ}^2 для разных $T_{\text{пр}}$. Видно, что увеличение времени прогноза в диапазоне до $T_{\text{пр}}=2$ с приводит к уменьшению нормализованной дисперсии отслеживания прогноза ϵ_{θ} . Аналогичный вывод следует и для других задач

пилотирования.

Помимо показателя σ_{θ}^2 для задач посадки и облета рельефа местности вычислялась дисперсия отклонения положения самолета от заданной траектории $\sigma_{\Delta H}^2$. Оптимальное значение времени прогноза соответствует минимуму дисперсии ошибки отслеживания $H_{\text{тек}}$. Для его нахождения была построена зависимость дисперсии ошибки отслеживания текущей высоты от времени прогноза.

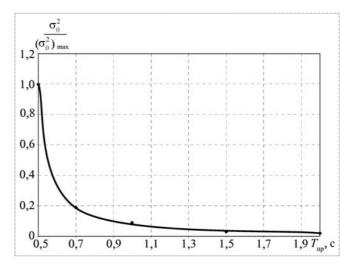


Рис. 7

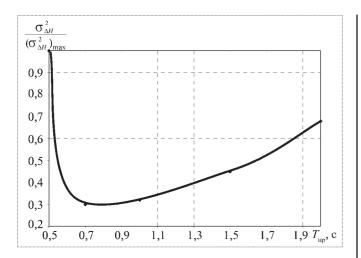


Рис. 8

Из зависимости, приведенной на рис. 8, где $(\sigma_{\Delta H}^2)_{\max}$ — максимальная дисперсия среди всех вычисленных $\sigma_{\Delta H}^2$ — для разных $T_{\rm пр}$, следует, что оптимальное значение времени прогноза, обеспечивающее минимум дисперсии ошибки отслеживания текущей высоты, $T_{\rm пр} \cong 0,7$ с. В процессе математического моделирования было установлено, что оптимальное значение $T_{\rm пр}$ изменяется в зависимости от ω_i довольно незначительно. В связи с этим значение времени прогноза можно принимать постоянным из диапазона $T_{\rm пр} = 0,7...1,0$ с.

Необходимо также отметить, что увеличение дисперсии входного сигнала не влияет на значение оптимума $T_{\rm np}$, а лишь пропорционально увеличивает дисперсию ошибки.

В задаче дозаправки топливом в воздухе, как отмечалось выше, координатой, определяющей качество пилотирования, является угол визирования ε_9 . В связи с этим оптимальным является значение $T_{\rm пр}$, обеспечивающее минимум дисперсии ошибки при отслеживании угла ε_9 . Описанным выше способом определялось и оптимальное значение времени прогноза $T_{\rm пр}$ в задачах посадки и облета рельефа.

Из зависимости, приведенной на рис. 9, где $(\sigma_{\varepsilon_{\text{тек}}}^2)_{\text{max}}$ — максимальная дисперсия среди всех вычисленных $\sigma_{\varepsilon_{\text{тек}}}^2$ для разных $T_{\text{пр}}$, следует, что оптимальным значением времени прогноза, обеспечивающим минимум дисперсии ошибки

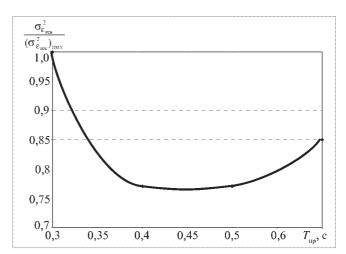


Рис. 9

по отслеживанию $\varepsilon_{\text{тек}}$, является $T_{\text{пр}} = 0,4...0,5$ с. Исследования показали слабую зависимость оптимального значения $T_{\text{пр}}$ от ширины спектра входного сигнала. В связи с этим можно считать, что $T_{\text{пр}}$ практически не зависит от ω_i и равно 0,4...0,5 с.

Экспериментальные исследования

Исследования на рабочей станции. Для проверки адекватности полученного решения при нахождении $T_{\rm np}$ с использованием модели управляющих действий летчика эксперименты проводились с участием опытного оператора. Полученные результаты (рис. 10, 11) качественно подтвердили характер приведенных выше зависимостей дисперсий ошибок при отслеживании прогноза и рассогласования по высоте. Оптимальное значение $T_{\rm np}$ примерно соответствовало тому,

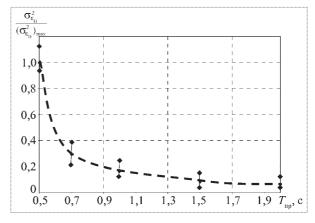


Рис. 10

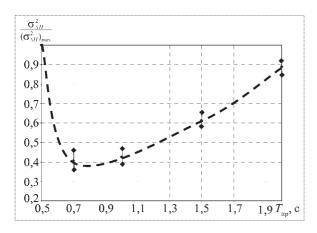


Рис. 11

которое было получено по результатам математического моделирования. Эта величина и была использована в дальнейшем при проведении экспериментальных исследований на пилотажном стенде в условиях функционирования системы имитации внешней обстановки и ИЛСа.

Исследования на пилотажном стенде. Экспериментальные исследования по оценке эффективности индикации на ИЛСе проводились на пилотажном стенде МАИ с цифровой системой визуализации, синтезирующей внешнюю визуальную обстановку, адекватную исследуемой целевой задаче. После проведения экспериментальных исследований выполнялась обработка записей полетов. В качестве критерия оценки точности пилотирования для каждой из задач были выбраны следующие показатели:

- субъективная оценка летчика (определялась летчиком после выполнения задачи по шкале Купера—Харпера);
- математическое ожидание ошибки;
- среднее квадратическое отклонение ошибки.

Математическое ожидание определяется по формуле

$$\overline{m}_{x} = \sum_{i=1}^{n} \frac{(X_{i})}{n}.$$

Среднее квадратическое отклонение

$$\sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (\overline{m}_x - (X_i)^2)},$$

где n — число измерений параметра в эксперименте; X_i — измеренное значение параметра движения в i-й момент времени.

Для задачи облета рельефа местности исследовались следующие два варианта информационного кадра системы отображения информации:

- информационный кадр, приведенный на рис. 12;
- информационный кадр, приведенный на рис. 12, но не имеющий пространственного коридора допустимых отклонений.

Кроме этого проводились исследования с программной траекторией, имеющей расширенный диапазон допустимых перегрузок.

Первоначально в экспериментах, связанных с облетом рельефа местности, желаемая (хорошая) и приемлемая (удовлетворительная) точности выполнения задачи пилотирования не были определены. После проведения серии экспериментов и выставления летчиками оценок с учетом записей параметров движения были определены желаемая (хорошая) и приемлемая (удовлетворительная) точности пилотирования в соответствии с методикой, приведенной в [7]. Желаемая точность пилотирования была определена как время нахождения самолета внутри трехмерного коридора допустимых отклонений, составляющее

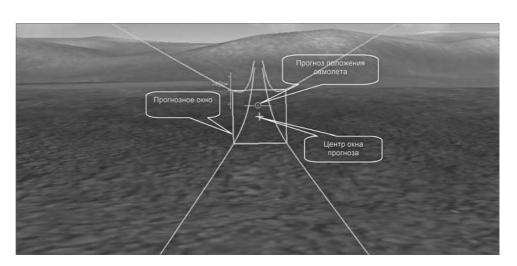


Рис. 12

Рис. 13

87 % от общего времени выполнения задачи пилотирования, что соответствует оценке PR = 3.5, а приемлемая -70 % (PR = 6.5).

Результаты экспериментальных исследований указывают на то, что применение дис-

плея преследования с предвидением и сформированным директорным сигналом в совокупности с расширением диапазона допустимых перегрузок с -0.8...+2.5 до -1.0...+3.125 уменьшает забросы средних квадратических отклонений от заданной высоты примерно с 7 до 3...4 м и оценка летчика изменяется с PR=6 до PR=3...4 по сравнению с вариантом, когда не использовался трехмерный коридор допустимых отклонений и применялся первоначально предложенный диапазон допустимых перегрузок.

В задаче посадки самолета на взлетно-посадочную полосу исследовались следующие варианты:

• инструментальная посадка, заключающаяся в отслеживании летчиком глиссады по компенсаторному дисплею (курсоглиссадный прибор) (рис. 13) с последующим принятием решения на

сход с глиссады и визуальную посадку. Помимо этого при выполнении посадки летчик использовал и другие индикаторы, а именно вариометр и указатель скорости;

- посадка с использованием ИЛСа, на котором отображалась траектория движения (глиссада) до момента принятия решения на сход с глиссады в виде трехмерного коридора с прогнозным окном и прогнозом положения самолета через время $T_{\rm пр}$ с последующим визуальным выравниванием и визуальной посадкой (рис. 14);
- посадка с использованием ИЛСа, на который выводилась траектория посадки как на прямолинейном участке глиссаде, так и на криволинейном участке (при сходе с глиссады и выравнивании вплоть до момента касания основных опор шасси взлетно-посадочной полосы) в виде трехмерного коридора с прогнозным окном и прогнозом положения самолета через время $T_{\rm пр}$ (см. рис. 14).

Выведение дополнительной информации на индикатор лобового стекла позволяет значительно уменьшить разброс точек касания. При этом при передаче прогнозной информации до момента принятия решения на сход с глиссады разброс точек касания уменьшается по продольной оси в 1,3 раза и в 4 раза по боковой координате по сравнению с инструментальной посадкой. Введение прогнозной информации на индикатор лобового стекла вплоть до момента касания основных

опор шасси взлетно-посадочной полосы позволяет уменьшить разброс точек касания по продольной оси еще дополнительно в 1,7 раза и в 2 раза по вертикальной скорости касания при среднем ее значении -0,68 м/с (в двух других вариантах это значение составляло -1,4 и -0,9 м/с соответственно). Введение предложенного вида отображения информации на ИЛСе (отклонение прогнозного положения угла наклона вектора скорости от центра глиссады) позволяет умень-

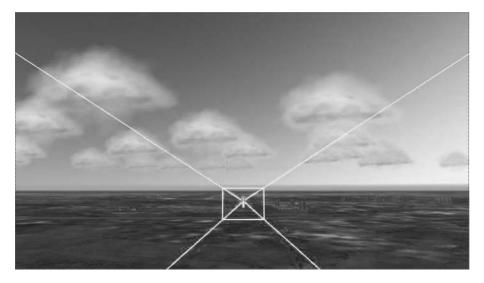


Рис. 14

Рис. 15

шить величину средних квадратических отклонений по высоте при отслеживании глиссады в 2,6 раза по сравнению с посадкой по курсоглиссалным планкам.

Для задачи дозаправки топливом в воздухе исследовались следующие варианты:

- летчику не демонстрировалась индикация на ИЛСе;
- летчику на ИЛСе была показана индикация, изображенная на рис. 15, причем цвет коридора допустимых отклонений изменялся в зависимости от скорости сближения: красный скорость сближения мала (менее 0,8 м/с), зеленый желаемая скорость сближения (0,8...1,2 м/с), желтый скорость сближения велика (более 1,2 м/с).

В задаче дозаправки топливом в воздухе применение предложенной системы отображения информации позволяет увеличить точность попадания штанги в заправочный конус в 1,5...1,8 раза и добиться того, чтобы скорость сближения при стыковке с заправочным конусом во всех экспериментах была в диапазоне 0,8...1,2 м/с, что и является желаемым. Эксперименты проводились в условиях значительных перемещений заправочного конуса.

Выводы

В настоящей статье обобщена методика построения перспективных систем отображения информации для различных задач пилотирования, требующих высокой точности при их выполнении. Сформирована единая методика и единые принципы синтеза системы отображения информации. Предложенный вариант индикации позволяет значительно повысить точность выполнения ряда целевых задач пилотирования (в 1,5...2,5 раза) и, как следствие, повысить безопас-

ность полета.

Библиографический список

- 1. **Sachs G., Sperl R., Sturhan I.** Curved and steep approach flight tests of a low cost 3D-Display for general aviation aircraft. Proceedings of 25 ICAS Germany, Sep. 2006.
- 2. **Efremov A.V., Koshelenko A.V., Tjaglik M.S.** Means for Flying Qualities Improvement in Piloting Tasks Required Extremely High Accuracy. Proceeding of AIAA conference. Chicago. 2009.
- 3. **Efremov A.V.** Development of criteria for prediction of handing qualities of new generation of aircraft TR on contract SPC-96-4073 MAI Wright Patterson USAF Base.1997.
- 4. **Read L.D., Drewell N.** A pilot model for tracking with preview The Eight NASA university annual conference on manual control. 1972 May.
- 5. **Летчик** как динамическая система / А.В. Ефремов, А.В. Оглоблин и др. Машиностроение, 1992.
- 6. **Hess R.** Structural model of the adaptive human pilot // J. of Guidance and Control. 1979, V. 3. № 5.
- 7. **Ефремов А.В., Оглоблин А.В., Кошеленко А.В.** Оценка и предсказание пилотажных характеристик современных самолетов / Общероссийский научно-технический журнал "Полет". 1999. № 3.

Работа поддержана грантом в рамках реализации ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009—2013 гг.

БЕЛОКОНОВ Игорь Витальевич — профессор Самарского государственного аэрокосмического университета, доктор техн. наук

ТРАВИН
Виталий Сергеевич — инженер-конструктор ГНП РКЦ "ЦСКБ-Прогресс"

Информационные технологии в научных экспериментах в космосе

И.В. Белоконов, В.С. Травин

E-mail: acad@ssau.ru; sputnik906@gmail.com

Предлагается структура научно-образовательного ресурса, использующего современные информационные технологии для создания на основе телеметрических данных адаптивных моделей и виртуальных образов, отражающих функционирование космического аппарата и условий, в которых проводятся эксперименты в космосе. Описаны примеры использования созданного программного комплекса для сопровождения миссий КА "Фотон-M2/3".

Ключевые слова: микрогравитационная космическая платформа; информационные технологии; концепция информационного ресурса.

I.V. Belokonov, V.S. Travin. Information Technology In Scientific Research In Space

The article offers a concept of an educational and research portal, using state-of-the-art information technologies to develop telemetry-based adaptive models and virtual images of spacecraft operations under the conditions of space experiments. It cites examples of effective use of the dedicated software for Foton-M2/3 mission control.

Key words: microgravitaion space platform; information technologies; information resource concept.

развитием космической техники усиливается интерес к проведению научных, технологических, биологических экспериментов в условиях космической среды — микрогравитации, вакуума, космической радиации, направленных не только на получение новых фундаментальных знаний, но и на отработку технологий по их практическому применению в целях получения новейших материалов с уникальными свойствами, достижение которых в земных условиях невозможно.

Услуги по обеспечению проведения таких исследований в космосе помимо

пилотируемых космических аппаратов и МКС предоставляются на автоматических микрогравитационных космических платформах (МКП). В России это уникальные МКП типа "Фотон/Бион" (рис. 1), проектирование и изготовление которых осуществляется в ГНП РКЦ "ЦСКБ-Прогресс".

В настоящее время наблюдается устойчивое стремление к увеличе-

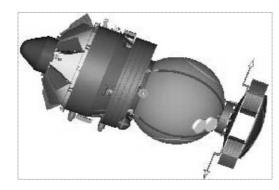


Рис. 1. МКП "Фотон-М"

Таблица 1

Лицамика	рипопомси	колицества	и рилор	экспериментов	ша	мкп	"Фотон"
динамика	изменения	количества	и видов	экспериментов	на	MIVII	ΨOTOH

МИП	E.	Доля экспериментов каждого вида от общего числа экспериментов, %			
МКП	Год запуска	Пассивные	Контролируемые в полете	Управляемые в полете	
"Фотон" № 11	1997	70	30	_	
"Фотон" № 12	1999	55	18	27	
"Фотон-М" № 1	2001	47	41	12	
"Фотон-М" № 2	2005	40	45	15	
"Фотон-М" № 3	2007	37	46	17	

нию числа сложных и дорогостоящих космических экспериментов на МКП, допускающих оперативный контроль над ходом их проведения и даже управление ими.

В табл. 1 отражена динамика изменения количества и видов космических экспериментов (неконтролируемых, контролируемых, управляемых во время полета), проведенных во время последних полетов МКП "Фотон". Начиная с полета МКП "Фотон" № 12, проводились эксперименты, информация о ходе которых передавалась оперативно на Землю по радиоканалу, а на модернизированных МКП "Фотон-М" уже предоставлялись услуги по частичному управлению отдельными экспериментами [1].

Успешный пример реализации таких услуг — эксплуатация системы ТЕЛЕСАПОТ. Она расширила сервисные возможности по работе с научной аппаратурой во время орбитального полета и обеспечила передачу информации о ее функционировании непосредственно на европейские региональные пункты приема информации.

Первые летные испытания системы ТЕЛЕСАПОТ были успешно проведены на МКП "Фотон" № 12 в сентябре 1999 г. Аппаратура ТЕЛЕСАПОТ использовалась совместно с аппаратурой ФЛЮИДПАК, предназначенной для проведения исследований в области физики жидкостей в условиях микрогравитации [2]. Она обеспечивала как возможность передачи на Землю научной информации (включая видеоизображения), так и прием на борту МКП новых параметров по управлению экспериментами.

Наземная станция в г. Кируна, расположенная на севере Швеции, использовалась для связи с МКП "Фотон" № 12. После поступления на на-

земную станцию Европейского космического агентства (ЕКА) в г. Кируна научная информация немедленно анализировалась представителями заказчиков экспериментов, а затем передавалась по сети Интернет в европейские центры и университеты, являющиеся непосредственными постановщиками экспериментов. Это позволяло осуществлять оперативный контроль и вмешиваться в ход проведения экспериментов в нештатных ситуациях.

Актуальность создания специализированных научно-образовательных космических ресурсов. Для повышения эффективности проведения космических экспериментов необходимо обеспечить непосредственное участие ученых—постановщиков экспериментов в сопровождении и управлении этими экспериментами.

Современные МКП оснащены множеством измерительных устройств, регистрирующих различные параметры функционирования МКП и ее бортовых систем. Процесс проведения экспериментов сопровождается также получением больших объемов информации. Так, в Центре управления полетами и моделирования (ЦУП-М) сложилась информационная инфраструктура, позволяющая оперировать в реальном времени большими объемами телеметрических и траекторных данных [3]. Однако возможности приема и обработки больших потоков информации не могут использоваться эффективно, если они не обеспечены средствами оперативной интерпретации этой информации в той форме, которая позволяла бы постановщикам и организаторам экспериментов оперативно анализировать ситуацию и вносить коррективы в дальнейший ход экспериментов. Таким образом, для правильной

оперативной интерпретации сложных физических и биологических процессов и явлений, протекающих на борту, ученым необходима исчерпывающая информация, предоставляемая в удобном и наглядном виде.

Исследуемый специализированный информационный ресурс для сопровождения полета МКП должен выполнять следующие функции:

- имитировать полет МКП в реальном времени с использованием адаптивной модели движения, параметры которой уточняются в процессе обработки телеметрической информации;
- отображать пространственно-временные параметры движения МКП в реальном времени на фоне автоматической масштабируемой карты Земли с учетом условий освещенности и радиовидимости с наземных измерительных пунктов;
- представлять в реальном времени орбитальное движение МКП вокруг Земли на фоне звездного неба и планет с отображением условий освещенности;
- представлять в реальном времени виртуальный облик МКП, ее ориентацию в пространстве;
- отображать состояние микрогравитационной обстановки в местах размещения экспериментального оборудования (важнейший показатель МКП), что крайне важно для экспериментов в области физики невесомости, космического материаловедения, биотехнологии, космической медицины. В случае высокой степени адекватности виртуального движения МКП реальному движению модельное микрогравитационное поле в части квазистатической (низкочастотной) составляющей, обусловленной торможением атмосферой, и высокочастотной составляющей, вызванной динамикой движения МКП относительно центра масс, будет также близким реальному.

Для обеспечения дружественного интерфейса для постановщиков экспериментов программный комплекс должен обеспечивать следующие сервисные функции:

— моделирование полета и динамики движения МКП и их визуализация должны осуществлятся как в режиме реального времени, так и в режиме анализа предшествующего этапа функционирования и планирования полета МКП на последующем интервале времени;

- синхронизацию работы имитационной модели (создаваемого виртуального образа МКП) с реальным временем;
- высокую степень наглядности и информативности представления данных, предназначенных постановщикам экспериментов;
- дружественный интерфейс, допускающий простое и гибкое управление графическим отображением данных на компьютере потребителя как в режиме реального времени, так и в режиме анализа и планирования полета МКП;
- одновременное отображение различных данных о функционировании объекта на нескольких экранах.

Результаты проведенных исследований по определению уровня остаточных микроускорений, достаточных для большинства из планируемых микрогравитационных экспериментов, получили оформление в виде официального документа SSP41000D [4]. Однако перспективные требования к микрогравитационной обстановке на борту МКП существенно выше по сравнению с требованиями SSP41000D (табл. 2).

Поэтому актуальность создания предлагаемого здесь специализированного информационного ресурса, сопровождающего полет МКП, для постановщиков космических экспериментов, а также ученых, интересующихся такими экспериментами, весьма велика.

Концепция информационного ресурса. Основная идея концепции заключается в использовании телеметрической информации, получаемой периодически во время сеанса связи с наземной станцией, для создания на сервере на Земле виртуального образа МКП, непре-

 $\begin{tabular}{ll} $T\ a\ f\ \pi\ u\ u\ a\ 2$ \\ \hline \begin{tabular}{ll} $T\ a\ f\ f\ a\ f\ a\ u\ u\ a\ 2$ \\ \hline \end{tabular} \end{tabular}$

Направление экспериментов	Уровень мик- роускорений	Время проведения	Энергопотреб- ление
Биотехнология	$10^{-4} g$	До 4-х недель	8200 Вт
Физика жидкости	$10^{-7}10^{-8} g$	До 30 суток	15400 Вт
Космическое материалове- дение	$10^{-7} g$	До 3-х месяцев	0,25 кВт

рывно и адекватно отражающего ее функционирование (реальный полет) и микрогравитационную обстановку в отсеке научной аппаратуры с оперативным размещением всей информации в наглядном виде в сети Интернет. Она должна быть доступна ученым и специалистам, проводящим эксперименты на орбите, а также студентам и преподавателям университетов. Это может быть осуществлено за счет использования современных методов обработки измерений, существующих информационных и сетевых ресурсов, позволяющих проводить моделирование, интерпретацию и виртуальное представление условий и параметров среды, в которых проводятся фундаментальные и прикладные научные исследования на борту МКП типа "Фотон/Бион", и обеспечить оперативный и удобный доступ к их использованию.

Оперативное предоставление информации об условиях космического полета позволит постановщикам экспериментов скорректировать в случае необходимости процесс проведения научных экспериментов, а любой желающий сможет через Интернет получить разнообразные сведения о реальном полете МКП, а также микрогравитационной обстановке, в которой проводятся научные эксперименты.

Используемые информационные технологии. Разработанный информационный ресурс представляет собой распределенный программный комплекс с разделением задач между клиентской и серверной частями. Такое разделение выбрано исходя из условий наиболее эффективного использования современных информационных технологий. При его разработке применялись следующие информационные технологии:

- язык программирования Java;
- система управления базами данных Java Database Connectivity (JDBC);
- динамические html-страницы JavaServer Page (JSP), Servlet;
- модель архитектуры приложения Model View Controller (MVC);
 - контейнер сервлетов Apache Tomcat;
 - бизнес-процессы JavaBeans;

- визуализация JOGL, Java3D;
- построение графиков JFreeChart;
- интеграция приложений в сеть Интернет Java Web Start;
- интерфейс пользователя JavaServer Faces (JSF);
- библиотека специализированных модулей Java Library for Spacecraft Mission (JLSM).

В качестве способа управления информационным ресурсом была выбрана модель архитектуры приложения MVC (Model-View-Controller). Такой подход предполагает разбиение сложной системы на три части:

модель, описывающая состояние компонента и средства изменения этого состояния;

представление компонента (Veiw), показывающее точку зрения пользователя на модель и предоставляющее ему данные в удобном виде;

контроллер, получающий данные из внешнего мира и реагирующий соответствующим образом на них, изменяя надлежащим образом модель и ее представление.

Таким образом, модель представляет реализацию компонента, *представление компонента* — внешний интерфейс, а *контроллер* — внутренний интерфейс.

Структура информационного ресурса. Структура этого ресурса представлена на рис. 2. Телеметрические данные, содержащие измерительную информацию о параметрах движения, поступают в качестве входных данных в программный блок определения параметров полета, находящийся на сервере.

После обработки поступающей информации и решения навигационной задачи определяются параметры движения центра масс и углы ориентации и угловые скорости МКП, приведенные к одному моменту времени. Далее они поступают в блок моделирования движения "виртуального образа" МКП, где используются в виде начальных условий при интегрировании системы дифференциальных уравнений движения. В результате рассчитываются параметры полного вектора состояния МКП и уровни микроускорений, вызванные как динамикой МКП, так и аэродинамическим торможением со стороны атмосферы, в различных точках отсека научной аппара-

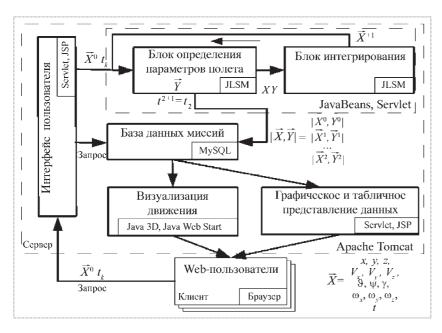


Рис. 2. Структура информационного ресурса

туры и создается виртуальный образ МКП на интервале времени до последующего прохождения над наземным центром управления и передачи на него очередной порции телеметрической информации.

После этого повторяется цикл обработки информации и обновляются начальные условия интегрирования, которые используются для последующего прогноза. В блоке визуализации осуществляется обработка информации, поступающей из блока моделирования. Она представляется в наглядном и удобном для пользователя виде, т.е. создается виртуальный образ движения МКП и поля микрогравитации. Этот блок встраивается в Web-сайт, создаваемый специально для поддержки данного информационного ресурса. Пользователи (студенты, преподаватели, постановщики экспериментов) могут обращаться к этой информации через Интернет [5].

Апробация информационного ресурса при сопровождении полета МКП "Фотон-М2". Первая попытка использовать прототип такого информационного ресурса для сопровождения космической миссии была предпринята в 2005 г. во время полета МКП "Фотон-М2". Один из экранов интерфейса первой версии интерактивного ресурса представлен на рис. 3. Необходимо было обрабо-

тать технологии создания в среде Интернет виртуального образа функционирования МКП по данным реальных измерений, поступающих 3—4 раза в сутки на Землю.

Исходными данными для создания виртуального образа являлись измерения, получаемые с экспериментального аппаратурного комплекса "Мираж-М", созданного в Самарском государственном аэрокосмическом университете (СГАУ) [6]. "Фотон-М2" в среднем 3—4 раза в сутки пролетал над Самарским центром контроля полета, где осуществлялся прием телеметрии. В состав телеметрической информации включались данные с двухсистемного (GPS/ГЛОНАСС) навигационного приемника о векторе движения цен-

тра масс, а также показания с магнитометров, входивших в состав аппаратурного комплекса "Мираж-М». Планировалось осуществлять моделирование и прогноз микрогравитационной обстановки на борту КА "Фотон-М2" непосредственно во время полета и предоставлять доступ к этой информации пользователям Интернета.

Подобный информационный сервис для МКП "Фотон-М" являлся новым, поскольку до этого микрогравитационная обстановка, в которой проводились эксперименты, восстанавливалась только по результатам послеполетной обработки данных. Ввиду ошибки, допущенной в программном обеспечении, формирующем файл данных с аппаратуры "Мираж-М" для телеметрического канала, этот ресурс функционировал в запланированном режиме только в первые сутки полета. Тем не менее, он вызвал большой интерес, одобрение и поддержку со стороны постановщиков экспериментов, в том числе со стороны ЕКА.

Адаптация информационного ресурса для сопровождения эксперимента YES2 во время миссии "Фотон-МЗ". С учетом опыта создания первой версии информационного ресурса была проведена его адаптация для поддержки проведения уникального тросового космического эксперимента

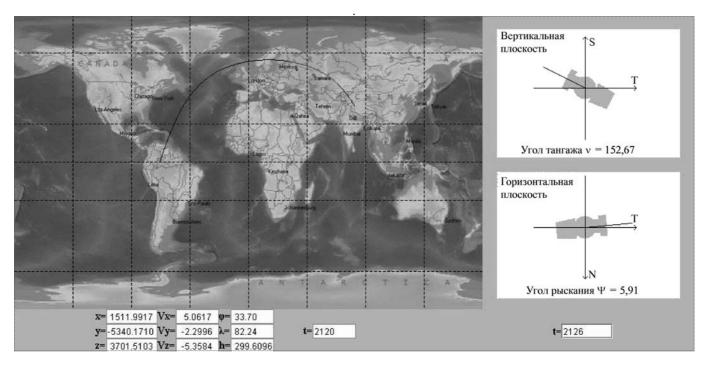


Рис. 3. Апробация на МКП "Фотон-М2"

YES2 во время полета МКП "Фотон-М3" (сентябрь 2007 г.). Эксперимент YES2, авторами которого являлись ЕКА и фирма Delta-Utec, был посвящен отработке технологии использования в космосе тросовой системы для доставки малых грузов с околоземной орбиты без применения тормозной двигательной установки [7].

В соответствии с принятой программой научных экспериментов проект YES2 на МКП "Фотон-МЗ" был реализован на последних сутках полета. После ориентации МКП по местной вертикали от блока FLOYD, включающего систему отделения, катушку с тросом, тормозное устройство для управления процессом размотки, было совершено отделение блока MASS, содержащего набор датчиков и измерительных устройств, вместе со сверхлегкой сферической капсулой "Фотино".

После того как была развернута тросовая система длиной порядка 30 км, в определенный момент времени от блока MASS отделялась капсула "Фотино", которая с относительно небольшими тепловыми нагрузками должна была осуществить вход в атмосферу, гашение скорости до ~ 35...40 м/с и приземление в заданном районе.

Далее в блоке FLOYD происходило отрезание троса, который вместе с блоком MASS входил в плотные слои атмосферы и сгорал.

В этом эксперименте была использована научная аппаратура SSAU-YES2, созданная в СГАУ в рамках инновационной образовательной программы, которая так же, как и аппаратура "Мираж-М" во время полета МКП "Фотон-М2", служила источником информации при создании виртуального образа функционирования МКП "Фотон-М3". Из-за относительно короткой продолжительности этого эксперимента и отсутствия возможности получения оперативной информации с аппаратуры SSAU-YES2 виртуальный образ функционирования МКП тон-М3" во время проведения эксперимента YES2 по измеренным данным был создан и размещен в Интернете уже после завершения полета и доставки аппаратуры на Землю. Однако во время проведения эксперимента YES2 виртуальный образ функционирования МКП "Фотон-М3" был создан на основании номинальной программы полета и демонстрировался в помещении Музея авиации и космонавтики СГАУ на большом экране. Такая попытка приблизить студентов и преподавателей университета к происходящим в

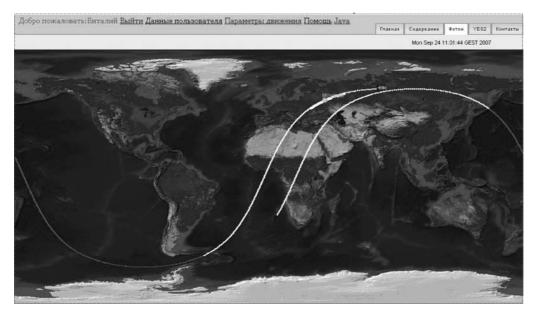
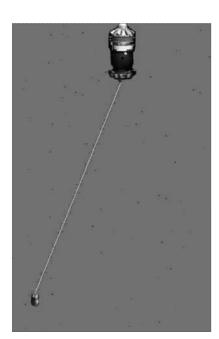



Рис. 4. Сопровождение полета МКП "Фотон-М3"

космосе событиям была оценена положительно и привела к повышению интереса к перспективным космическим технологиям и экспериментам в космосе.

Отдельные фрагменты, иллюстрирующие полет МКП и процесс разматывания тросовой системы в космосе, приведены на рис. 4 и 5.

Таким образом, информационные и сетевые

ресурсы, созданные для сопровождения космических миссий, позволяют не только повысить вероятность их успешного проведения и в конечном итоге результативность, но и усилить сошиальный фект от пропаганды достижений космонавти-

Использование описанной

Рис. 5. Сопровождение эксперимента YES2

концепции и структуры информационного ресурса позволяет проводить моделирование, интерпретацию и виртуальное представление условий функционирования космических аппаратов и параметров среды, в которых проводятся фундаментальные научные исследования, и обеспечить оперативный и удобный доступ к их применению в режиме реального времени.

Тестовое использование информационного ресурса, адапти-

рованного под сопровождение полета микрогравитационных платформ "Фотон-М2/3", подтвердило правильность предложенной концепции и позволило перейти к созданию универсального информационного ресурса, допускающего относительно простую настройку под конкретную космическую миссию.

Настоящая статья является развитием работ, выполненных по гранту $P\Phi\Psi N \ge 06-08-00244$ -а.

Библиографический список

- 1. **Белоконов И.В., Козлов И.В.** Оценка эффективности процесса управления научными экспериментами на автономных микрогравитационных космических платформах // Вестник СГАУ. 2004. № 1. С. 17—25.
- 2. Erichsen P., Rieschel M. The telescience support unit enables telescience operations experiments on board the Foton spacecraft // Processings of the Intern. Conf. "Scientific and Technologies Experiments on Russian Foton/Bion Recoverable Satellites: Results, Problems and Outlooks". Samara, Russia, 25–30 June, 2000. P. 357–362.
- 3. Иванов Н.М., Олейник А.Г., Цветков А.Б. Сравнительный анализ методов и алгоритмов, используемых для компьютерного синтеза изображений сложных космических систем // Управление движением и навигация летательных аппаратов: Сб. тр. IX Всерос. научн.-техн. семинара по управлению движением и навигации летательных аппаратов. Ч. 2. Самарский филиал Российской академии космонавтики. Самара, 1999. С.188—193.
- 4. **Allen Karchmer.** Microgravity Requirements for Baseline Scientific Research on the International Space Station // MGMG. № 16. May. 1997.
- 5. **Курниван Н.О.** Создание Web-ориентированных приложений на языке Java с помощью сервлетов и JSP. М.: Lori, 2005.
- 6. **Belokonov I.V., Semkin N.D.** The navigational experiments on microgravitational space platform "Foton-M2" // Acta Astronautica, 64 (2009), P. 1180–1190.
- 7. **Kruijff M., Hambloch P., Heide E.J.** The second young engineers satellite (YES2) // IAC-07-D2.3.04, IAF Hyderabad, 2007.

УДК 521

Исследование реакции рабочего процесса в камере сгорания на импульсное возмущение давления

А.А. Шибанов, А.Ф. Агарков, А.А. Нарижный, В.П. Пикалов

E-mail: mail@nic-rkp.ru

Исследовано влияние импульса давления на пульсационное состояние процесса горения в модельной камере сгорания, работающей на газообразных компонентах топлива метан—кислород при атмосферном давлении. Импульс давления генерировался при взрыве тонкой медной проволочки [1, 2], натянутой между двух электродов, в момент прохождения через нее мощного электрического заряда.

Использовались модельные смесительные головки двух типов: в виде блока из пяти двухком-понентных форсунок со сталкивающимися струями и в виде одной двухкомпонентной эмульси-онной форсунки с внедрением трех струй горючего в поток окислителя.

Ключевые слова: фосунка; модельная камера сгорания; импульсное возмущение; автоколебания.

A.A. Shibanov, A.F. Agarkov, A.A. Narizhny, V.P. Pikalov. Researching Combustor Work Process Reactions To Pulse Pressure Disturbance

The article makes a research of the influence of pressure pulse on the burning process in the pattern combustor, operating on gaseous components of methane-oxygen fuel under standard atmospheric pressure. The pressure pulse was generated by the explosion of a thin copper wire, strained between two electrodes, when a significant electric charge goes through it.

The experiment involved two pattern mixing mounts: an assembly of five two-component injectors with colliding sprays, and a two-component emulsion injector, featuring a capability to inject three streams of fuel into the oxidizer.

Key words: injectors; pattern combustor; pressure pulse change; automatic fluctuations.

В ФКП "НИЦ РКП" разработана и применяется в течение длительного времени методика проведения модельных испытаний однофорсуночных камер сгорания в условиях лабораторного стенда.

Испытания проводятся на газообразных компонентах топлива при атмосферном давлении в модельной камере. Определяются границы областей высокочастотной неустойчивости горения для различных вариантов форсунок и по удаленности моделируемого натурного режима от границы устойчивости определяется лучший в отношении устойчивости рабочего процесса к самовозбуждению колебаний вариант форсунки. Таким образом, оценивается устойчивость к так называемому "мягкому" (плавному) возбуждению автоколебаний.

Такая оценка устойчивости является неполной. Известно, что возбуждение колебаний в натурных камерах может иметь "жесткий" характер (напри-

ШИБАНОВ Александр Артурович начальник сектора ФКП "НИЦ РКП", кандидат техн. наук

АГАРКОВ Анатолий Федорович ведущий инженер ФКП "НИЦ РКП"

НАРИЖНЫЙ Александр Афанасьевич ведущий научный сотрудник ФКП "НИЦ РКП", кан-

ПИКАЛОВ
Валерий Павлович —
начальник научно-исследовательского отдела ФКП
"НИЦ РКП"

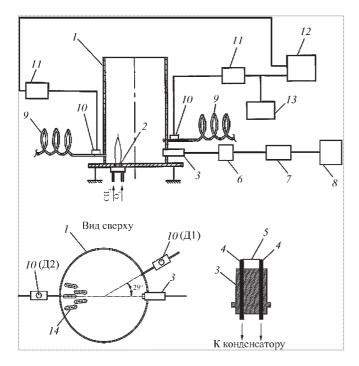


Рис. 1. Схема экспериментальной установки для исследования устойчивости рабочего процесса к "жесткому" возбуждению высокочастотных колебаний

мер, возбуждение от импульсных возмущений давления). В связи с этим сделана попытка оценки устойчивости рабочего процесса к импульсным возмущениям давления в таких модельных условиях работы форсунок, которые назначаются

СН₄(газ)

О₂ (газ)

О₂ (газ)

О₃ (газ)

О₄ (газ)

О₅ (газ)

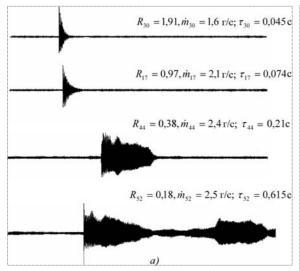
О₆ (газ)

О₇ (газ)

О₈ (газ)

Рис. 2. Схемы эмульсионной (a) и струйной (δ) форсунок и электрического устройства для генерации импульсных возмущений (s)

при определении границ областей самовозбуждения высокочастотных колебаний [3].


Модельная камера сгорания (рис. 1) представляла собой охлаждаемый водой цилиндр I диаметром D=184 мм и длиной L=280 мм, который устанавливался вертикально на металлической охлаждаемой пластине с отверстием. В это отверстие вставлялась обвязка либо с эмульсионной форсункой 2, либо с блоком из пяти двухкомпонентных струйных форсунок 14.

Устройство для создания в камере сгорания импульса давления состояло из фторопластового корпуса 3 с электродами 4, между которыми напаивалась тонкая медная проволочка 5 диаметром 0.8 мм. Электроды через разъединитель цепи 6 соединялись кабелем с высоковольтным конденсатором 7, который заряжался от высоковольтного источника BC-23 8.

Для замера пульсаций давления в камере имелись два датчика пульсаций, расположенные в той же горизонтальной плоскости, что и устройство для ввода возмущений. Датчик $\mathcal{L}1$ располагался рядом с источником импульсов давления 3 под углом 29° к диаметру, проходящему через 3, а датчик $\mathcal{L}2$ — напротив 3, рядом с форсункой. В отверстия вставлялись два акустических зонда, состоящие из трубок-волноводов 9 и датчиков пульсаций ЛХ-610 10. Сигналы с датчиков 10 уси-

ливались широкополосными усилителями 11 типов У7-1 и У7-6 и поступали на запись и обработку в компьютер 12. На экран монитора выводились осредненные в темпе испытания спектр пульсаций с датчика Д1, амплитуда и частота главного спектрального максимума, а также значения расходов компонентов топлива. Для визуального контроля пульсаций использовался осциллограф 13 типа С1-69.

Ввод импульса давления в объем камеры сгорания осуществлялся следующим образом (рис. 2). От источника высокого напряжения ВС-23 заряжал-

рания, инициированных подачей импульса давления, при приближении к границе самовозбуждения (R - относительное расстояние до границы):

эмульсионной форсунки

 $R_{33} = 0.542$; $\dot{m}_{33} = 2.886 \, \Gamma/c$; $\tau_{33} = 0.09 \, c$

 $R_{26} = 0.445$; $\dot{m}_{26} = 2.988 \, \Gamma/c$; $\tau_{26} = 0.37c$

помощью разъединителя цепи 6 цепь замыкалась. Через проволочку 5 протекал электрический заряд, приводивший к ее мгновенному разогреву и испарению. Эти явления сопровождались генерацией в камере сгорания импульса давления.

Импульсные возмущения давления подавались в следующих областях рабочих режимов:

в области гистерезиса автоколебаний;

устойчивом режиме;

в режиме самовозбуждения автоколебаний.

При этом интерес представляла оценка реакции рабочего процесса на импульс давления в области гистерезиса автоколебаний (области потенциальной неустойчивости к различного рода возмущениям, в том числе и импульсным).

Вначале, при фиксированном расходе метана, расход кислорода непрерывно увеличивался до момента самовозбуждения в камере незатухающих высокочастотных автоколебаний. Этот режим фиксировался и определялся как режим на границе области высокочастотных колебаний - $\dot{m}_{\rm rp}$. Затем расход кислорода достаточно медленно снижался до тех пор, пока автоколебания не прекращались. Этот режим определялся как реходов кислорода на границе самовозбуждения и на границе гистерезиса является шириной зоны гистерезиса для данной конкретной реализации рабочего процесса.

Затем путем увеличения расхода кислорода рабочая точка снова возвращалась в зону гистерезиса при некотором текущем значении $\dot{m}_{\scriptscriptstyle \mathrm{Tek}}$. При этом состояние рабочего процесса оставалось устойчивым. В этом положении при $\dot{m}_{\text{тек}}$ включалась регистрация пульсаций и производилось замыкание электрической цепи, приводившее к разряду конденсатора через тонкую проволочку и генерации в камере сгорания импульсного возмущения давления. Относительное расстояние зарегистрированного режима до границы устойчивости определялось следующим образом:

$$R = \frac{\dot{m}_{\rm rp} - \dot{m}_{\rm rek}}{\dot{m}_{\rm rp} - \dot{m}_{\rm rucr}}.$$

На рис. 3 показаны примеры возбуждения высокочастотных колебаний при испытаниях пятифорсуночного блока струйных форсунок (рис. 3, а) и эмульсионной форсунки (рис. 3, δ) — изменение колебаний давления при подаче импульсных возмущений в камеру сгорания по мере приближения

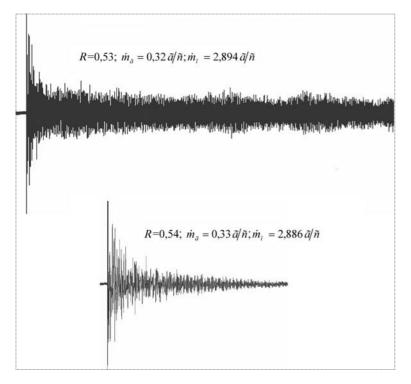


Рис. 4. Невоспроизводимость возбуждения автоколебаний в модельной камере от импульсных возмущений давления

к границе области неустойчивости. Видно, что с приближением режима работы камеры к границе области неустойчивости ($R \rightarrow 0$) длительность затухания колебаний увеличивается. Установлено, что возбуждение автоколебаний от импульсных возмущений имеет место только в области колебательного гистерезиса вблизи границы самовозбуждения автоколебаний.

В некоторых случаях обнаружена невоспроизводимость характера возбуждения автоколебаний при подаче импульсных возмущений вдали от границы устойчивости на одних и тех же режимах (рис. 4).

В процессе проведения экспериментов с подачей импульсных возмущений на различных режимах работы модельной камеры наблюдался разный характер изменений пульсационного состояния после воздействия на рабочий процесс импульсных возмущений, например:

переход из устойчивого состояния в режим автоколебаний (см. рис. 3);

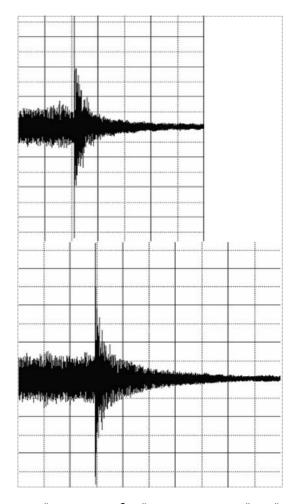


Рис. 5. Импульсный срыв автоколебаний на акустически устойчивый уровень "шумов"

переход из режима автоколебаний большой амплитуды в устойчивый режим горения (срыв автоколебаний после прохождения импульсного возмущения) (рис. 5);

восстановление исходного шумового состояния после завершения характерного переходного процесса (см. рис. 3).

Указанные особенности отмечались в испытаниях модельных камер сгорания при более высоком давлении в камере, использовании жидкого горючего и газообразного окислителя [4].

Похожий характер колебаний давления после воздействия импульсного возмущения в указанных различных модельных условиях позволяет предполагать, что в этих случаях имеет место одинаковый механизм проявления пульсаций давления, отображающий реакцию процесса горения на внешние искусственные импульсные возму-

щения. Следовательно, присутствие жидкофазных процессов не является исключительно необходимым фактором для формирования отклика процесса горения на импульсное возмущение, достаточное для возбуждения автоколебаний в зоне гистерезиса колебаний давления.

Полученные экспериментальные данные могут быть объяснены следующим образом. Подача импульсного возмущения в модельную камеру сгорания, работающую при атмосферном внутрикамерном давлении на газообразных компонентах топлива, приводит к перестройке структуры зоны горения, например, за счет изменения условий стабилизации основания горящего факела или изменения взаимного положения соседних струй окислителя и горючего и изменения интенсивности смешения. В результате перестройки структуры зоны горения колебательная система может обеспечивать либо поддержание, либо затухание инициированных импульсным возмущением колебаний давления в условиях существования новой структуры зоны горения.

Естественно, что в количественном отношении возмущающий импульс давления в натурной камере сгорания может вносить более сильную деформацию в структуру зоны горения за счет дополнительного вклада в усиление колебаний интенсификации процесса дробления капель. Поэтому область гистерезиса колебаний в натурной камере сгорания, в которой могут возбуждаться незатухающие автоколебания от импульсных возмущений, может быть более обширной, чем в модельной камере, а сама реакция процесса горения на импульсное возмущение – более ярко выраженной. В качественном плане воздействие импульсного возмущения в обоих случаях приводит к одинаковым последствиям – изменению структуры зоны горения. Это означает, что при испытании в составе однофорсуночной модельной камеры различных вариантов форсунок можно проводить для них сравнительную оценку и выбирать лучший вариант по устойчивости процесса горения к импульсным возмущениям.

В заключение сделаем следующие выводы.

Впервые проведена экспериментальная оценка реакции рабочего процесса к импульсным возмущениям давления в модельной камере

сгорания ЖРД, работающей при атмосферном внутрикамерном давлении на газообразных компонентах топлива.

□ Для генерации искусственных импульсов давления в полости модельной камеры сгорания впервые применено возмущающее устройство, использующее эффект взрывающихся проволочек при пропускании через них электрического заряда высокого напряжения.

□ Установлено, что имеет место возбуждение автоколебаний от импульсных возмущений в области гистерезиса вблизи границы самовозбуждения автоколебаний. При этом для "жесткого" возбуждения автоколебаний от импульсов давления присутствие жидкой фазы не обязательно.

□ В зависимости от величины импульсного возмущения и удаленности режима работы от границы области самовозбуждения автоколебаний наблюдались разнообразные изменения пульсационного состояния после воздействия на рабочий процесс импульсных возмущений.

□ Результаты выполненных исследований при работе модельной камеры на газообразных компонентах топлива открывают возможность проведения в модельных условиях сравнительных оценок высокочастотной устойчивости рабочего процесса с различными вариантами натурных форсунок камер сгорания ЖРД к "жесткому" возбуждению автоколебаний.

Библиографический список

- 1. **Беннет Ф.** (**Bennet F.**). Течения, возникающие при взрыве проволочки / Взрывающиеся проволочки; пер. с англ. М.: Изд-во иностр. литературы, 1963. С. 191.
- 2. **Нарижный А.А., Пикалов В.П., Шибанов А.А.** Способ создания импульсов давления в акустических полостях камер сгорания и газогенераторах жидкостных ракетных двигателей. Заявка на изобретение 20099136913. Полож. решение о выдаче патента от 23.07.2010 г.
- 3. Шибанов А.А., Агарков А.Ф., Нарижный А.А., Пи-калов В.П. и др. Экспериментальное исследование в модельных условиях реакции рабочего процесса на импульсное возмущение давления в модельной камере сгорания. М.: Изд-во НИЦ РКП, 2009.
- 4. Драновский М.Л. и др. Комплекс исследований в обеспечение создания методики отработки устойчивости рабочего процесса ЖРД. М.: Изд. НИИХиммаш, 1990.

ЖИРАТКОВА
Лариса Александровна —
старший преподаватель
Новосибирского государственного университета

СЕРЬЕЗНОВ Алексей Николаевич — научный руководитель ГУП СИБНИА им. С.А. Чаплыгина, профессор, доктор техн. наук

Устройство для идентификации дискомфортных режимов полета и оценка точности его работы

Л.А. Жираткова, А.Н. Серьезнов

E-mail: sibnia@sibnia.ru

Представлены состав и назначение блоков разработанного устройства для идентификации дискомфортных режимов полета. Его первый блок — аналого-цифровое вычислительное устройство — дает максимальную погрешность, так как на него подаются аналоговые сигналы со штатных датчиков самолета. Для этого блока рассчитаны методическая погрешность оценки временного интервала Т между точками пересечения линии нулевого уровня вертикальными порывами и погрешность оценки Т, вызванная порогом срабатывания компаратора. Определено минимальное значение крутизны функции F при переходе через нулевой уровень, при котором гарантируется заданная точность работы устройства.

Ключевые слова: идентификация; дискомфортный режим полета; крутизна функции.

L.A. Zhiratkova, A.N. Seryoznov. Uncomfortable Flight Mode Identifier And Its Accuracy Control

The article describes the composition and purpose of the units of a specially-designed uncomfortable flight mode identifier. The first element of the new device, its combined analogue-digital computer accounts for the maximal error, as it is fed on analogue signals from all organic sensors of the aircraft. The paper also reviews the T method error for assessing the time interval between the points of crossing of the zero level by vertical gusts and the T estimation error adjusted for the comparator response level. It defines the minimal curve slope of the F functions at the zero level, required to ensure the preset accuracy of the device.

Key words: identifier; uncomfortable flight mode; curve slope.

Состав устройства. Устройство для идентификации дискомфортных режимов (рисунок) включает в себя:

1) аналого-цифровое вычислительное устройство (ВУ), на вход которого с датчиков, установленных на борту воздушного судна, подаются аналоговые величины сигналов вертикальной скорости V_y , угла тангажа $\Delta \vartheta$, угла атаки $\Delta \alpha$, истинной воздушной скорости V_e , а на выходе ВУ формируется двоичный сигнал T_F , соответствующий периоду между появлениями вертикальных порывов с положительным фронтом;

- 2) схему осреднения периодов T_F (COT), на которой происходит осреднение периодов вертикальных порывов T_F за время осреднения, зависящее от выбранной разрядности счетчиков CT2-1, CT2-2 и схемы деления, используемых в схеме осреднения вертикальной перегрузки Δ (COH);
- 3) схему осреднения отклонения вертикальной перегрузки (СОН), в которой осреднение происходит за то же время осреднения T, что и в СОТ;

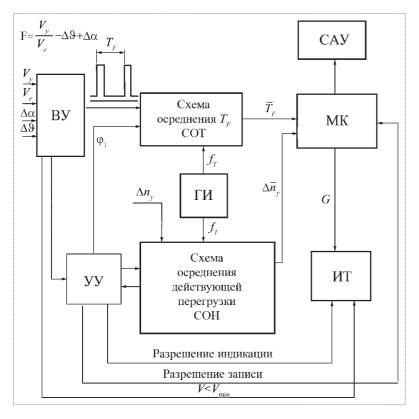


Схема устройства для идентификации дискомфортных режимов полета

- 4) генератор импульсов ГИ, импульсы которого частотой $f=100\,$ Гц используются в СОТ и СОН;
- 5) микроконтроллер (МК), выполняющий функции функционального построителя (ФП) и схемы сравнения кодов (ССК).

Функциональный построитель формирует цифровые коды предельных значений отклонения вертикальной перегрузки $|\Delta n_y|^*$ в зависимости от среднего периода появления вертикальных порывов $|\Delta n_y|(\overline{T}_F)$.

Схема сравнения кодов производит сравнение осредненного отклонения вертикальной перегрузки $|\Delta \overline{n}_y|$, поступающего с СОН, с предельным значением, выработанным функциональным построителем (ФП) по полученной оценке частот $|\Delta n_y|^*$ (\overline{T}_F) = $|\Delta n_{y\,\text{пред}}|$ (f). На основе проведенного сравнения МК вырабатывает один из трех сигналов G, индицируемых на информационное табло (ИТ):

"Продолжать полет", если $|\Delta \overline{n}_{v}| \leq |\Delta n_{v}|^{*} - \Delta;$

"Изменить режим полета", если $|\Delta n_y|^* - \Delta \le |\Delta \overline{n}_y| \le |\Delta n_y|^* + \Delta$; т.е. если действующие приращения перегрузки достаточно близки к предельно допустимым;

"Предельная перегрузка", если $|\Delta n_y|^* + \Delta \le |\Delta \overline{n}_y|;$

- 6) информационное табло (ИТ), на котором кроме отмеченных выше трех сигналов индицируется " $V < V_{\min}$ ";
- 7) управляющее устройство (УУ), координирующее работу всего цифроаналогового устройства после включения тумблера "Пуск"—"Стоп" в положение "Пуск" и при достижении скорости $V > V_{\min}$.

Анализ погрешности устройства. Вычислительное устройство аналого-цифрового типа создает максимальные погрешности при идентификации дискомфортных режимов полета. Поэтому целесообразно остановиться на погрешностях именно этого устройства. Оно выполнено на интегральных операционных усилителях (ОУ) типа 153УД5, ис-

пользуемых для построения измерительных приборов. Особенности ОУ типа 153УД5 — малое напряжение смещения нуля (0,5 мВ), малые уровни дрейфа и шумов, высокий коэффициент усиления, высокая точность выдерживания большого значения коэффициента усиления. В вычислительном устройстве реализовано упрощенное выражение зависимости F:

$$F = \frac{\Delta V_y}{V_a} - (\Delta \vartheta - \Delta \alpha) \tag{1}$$

вместо

$$F = \frac{\Delta V_{y}}{V_{e}} - \sin(\Delta \vartheta - \Delta \alpha).$$

При этом в худшем случае допускается методическая погрешность, не превышающая 3,3 %, так как величина $\Delta \vartheta - \Delta \alpha$ не превышает 25°.

Схема ВУ приведена на рисунке. Сигналы постоянного тока ΔV_{ν} , ΔV , $\Delta \alpha$, $\Delta \vartheta$ (аналоговая

шкала датчиков ± 27 В) подаются на масштабные блоки с высоким сопротивлением ($R_{\rm BX}$ = = R1 = 500 кОм), что исключает влияние выходного сопротивления датчиков на погрешность работы ВУ.

Масштабные блоки выполнены на основе ОУ типа 153УД5, характеризующихся чрезвычайно малыми значениями как входного, так и разностного токов ($i_{\rm BX}=10^{-9}$ A, $\Delta i_{\rm BX}=0.4\cdot10^{-9}$ A), что очень важно для исключения температурного дрейфа при больших значениях сопротивления цепи обратной связи [1]. Коэффициент передачи масштабных блоков (k=10/27) выбран исходя из допустимого диапазона изменения сигнала (± 10 B) на выходе ОУ типа 153УД5.

В ВУ использовано прецизионное устройство деления времяимпульсного типа, разработанное на кафедре "Вычислительная техника" Санкт-Петербургского университета под руководством В.Б. Смолова [2], имеющее относительную погрешность 0,08~% в широком диапазоне температур. Предлагаемая нами принципиальная схема отличается от оригинала измененными значениями входных сопротивлений R_0 , $R_{\rm OC}$ на инвертирующих входах усилителей DA3 и DA5. Поскольку работа схемы подробно описана в литературе, то здесь отметим лишь, что напряжение на выходе схемы определится в соответствии с выражением

$$U_{\text{\tiny BMX}} = U_0 \frac{R_{\text{OC}} U_2}{R_0 U_1} = \frac{U_2}{U_1}. \tag{2}$$

Здесь принято: $U_0 = 9$ В, $R_0 = 9$ $R_{\rm OC}$.

В выражении (2) следует считать: $-4 \text{ B} \le U_2 \le 0$, $-4 \text{ B} \le U_1 \le -1 \text{ B}$; $0 \le U_{\text{Вых}} \le 10 \text{ B}$. Ограничение напряжения делителя U_1 на уровне 1 В соответствует тому, что устройство начинает функционировать при $V > V_{\text{min}}$, причем $V_{\text{min}} = 0,1 \ V_{\text{max}}$ (скорости V_{max} соответствует напряжение $U_V = 27 \text{ B}$). Этой цели служит компаратор, выполненный на усилителе DA12. Сигнал, формируемый компаратором, также отображается на табло с помощью индикатора. В схеме используются ОУ типа 153УД5 и серийные схемы DD1 серии KP1533.

Поскольку схема деления является одноквадрантной, а величина V_y — знакопеременной, то схема деления ВУ содержит прецизионную схему выделения модуля [1] и схему знака параметра на усилителе DA9. Схема знака управляет быстродействующим реле с магнитоуправляемыми контактами типа РЭС55А (время срабатывания — отпускания составит 10^{-3} с) таким образом, что напряжение на выходе схемы соответствует работе двухквадрантного устройства деления. Формирование функции F в соответствии с выражением (1) производится на инвертирующем входе усилителя DA11.

Входные суммирующие сопротивления выбираются следующим образом. Каждая математическая переменная в аналоговом ВУ изображается с помощью своего масштаба, согласующего его максимальное значение с максимальным значением аналоговой шкалы решающего блока или датчика (при этом относительная ошибка вычисления наименьшая). Следовательно, имеет место следующая система уравнения связи:

$$U_{V_{y}} = V_{y} m_{V_{y}}; \ U_{\alpha} = \alpha m_{\alpha}; \ U_{V} = V m_{V};$$

$$U_{F} = F m_{F}. \ U_{9} = 9 m_{9}.$$
(3)

Масштабы m_{Vy} , m_{α} , m_{V} , m_{ϑ} выбираются при настройке датчиков. Выбор масштаба будет рассмотрен ниже при определении погрешности ВУ. На основании выражений (1), (2) и (3) коэффициенты передачи $K_{111}...K_{113}$ определяются для режима пропускания [3] из выражений:

$$K_{111} = \frac{R_3 R_4}{R_2 + R_3 R_4} = \frac{m_F}{m_{V_y}} = \frac{m_F m_V K_{14}}{m_{V_y} K_{13}} = \frac{m_F m_V}{m_{V_y}},$$

$$K_{112} = \frac{R_2 R_4}{R_3 + R_2 R_4} = \frac{m_F}{m_\alpha K_{15}} = \frac{27 m_F}{4 m_\alpha},$$

$$K_{113} = \frac{R_2 R_3}{R_4 + R_2 R_3} = \frac{m_F}{m_V K_{15}} = \frac{27 m_F}{4 m_V},$$
(4)

ле

$$R_3 \| R_4 = \frac{R_3 R_4}{R_4 + R_3}; \quad R_2 \| R_4 = \frac{R_2 R_4}{R_4 + R_2}; \quad R_2 \| R_3 = \frac{R_2 R_3}{R_2 + R_3}.$$

При определении коэффициентов передач предполагалось, что входное сопротивление усилителя много больше каждого из входных сопротивлений R_2 , R_3 , R_4 ($R_{\rm BX,VC}=300$ кОм).

Рассмотрим погрешность схемы аналоговой ВУ. Конечной целью работы ВУ является определение с помощью компаратора временного интервала T, в соответствии с длительностью которого функциональным построителем формируется предельное значение отклонения вертикальной перегрузки $|\Delta n_y|^*$. Погрешность определения временного интервала T обусловлена двумя факторами.

1. Методической погрешностью ΔF^*

$$\Delta F^* = |\sin(\Delta \vartheta - \Delta \alpha) - (\Delta \vartheta - \Delta \alpha)| = 0.014$$
 (5) при $\Delta \vartheta - \Delta \alpha = 25^\circ$.

Инструментальной погрешностью можно пренебречь ввиду ее малости.

Относительная погрешность вводится по отношению к максимальному значению временного интервала $T_{\rm max}=10$ с. При этом данная погрешность будет тем больше, чем меньше крутизна функции F при переходе нулевого уровня, а именно

$$\delta_{T_{1 \max}} = \frac{\Delta T_{1}}{T} \le \frac{2 \Delta F^{*}}{T m_{F} \left[\left(\frac{dF}{dt} \right)_{F=0} \right]_{\min}}.$$
 (6)

2. Порог срабатывания компаратора U_{Π} также вводит ошибку при определении временно интервала T. Порог срабатывания

$$U_{\pi} = \frac{U_{VD_1} R_5}{R_5 + R_6}, \tag{7}$$

где $R_{\rm 5}=7.2~{\rm kOm},~R_{\rm 6}=10~{\rm mOm},~U_{{\it VD}_{\rm 1}}$ — напряжение стабилизации стабилитрона КС133, равное 3,5...3,6 В. В этом случае сигнал от компаратора можно непосредственно подавать на входы логических ТТЛ-схем 1533-й серии. Порог срабатывания $U_{\rm n}$ вводится специально [4], чтобы повысить помехозащищенность компаратора, так как любая помеха в составе входного сигнала, приходящая во время переброса схемы, не будет возвращать схему в первоначальное положение, если только амплитуда помехи не превышает $U_{\rm n}$.

Принимая $\Delta T_2 = \Delta t_n$, можно определить максимальное значение погрешности $\delta_{T_2,mr}$

$$\delta_{T_{2 \max}} = \frac{\Delta T_2}{T} \le \frac{U_{\pi}}{T_{m_F} \left[\left(\frac{dF}{dt} \right)_{F=0} \right]_{\min}}.$$
 (8)

Для повышения помехозащищенности целесообразно выбирать U_{Π} на уровне 2 мВ. Очевидно, масштаб функции F следует выбрать таким, чтобы $\delta_{T_1} = \delta_{T_2}$, поэтому, приравнивая (6) выражению (8), получим

$$m_F = \frac{U_{\pi}}{2\Lambda F^*} = 0.072 \text{ B} \cdot \text{c} \cdot \text{m}^{-1}.$$
 (9)

Из равенств (4) могут быть определены сопротивления R_2 , R_3 , R_4 .

Общая погрешность определения временного интервала T определяется из выражений

$$\delta_T = \sqrt{(\delta_{T_1})^2 + (\delta_{T_2})^2} = \sqrt{2} \delta_{T_1},$$
 (10)

$$\delta_T = \frac{2\sqrt{2} \Delta F^*}{T \left[\left(\frac{dF}{dt} \right)_{F=0} \right]_{\min}}.$$
 (11)

Задавшись допустимым значением относительной погрешности δ_T , можно определить минимальное значение крутизны функции при пе-

реходе через нулевой уровень
$$\left\| \left(\frac{dF}{dt} \right)_{F=0} \right\|_{\min}$$
, при

котором еще гарантируется заданная точность работы устройства, а именно

$$\left| \left(\frac{dF}{dt} \right)_{F=0} \right|_{\min} \ge 2\sqrt{2} \frac{\Delta F^*}{\delta_T T}. \tag{12}$$

Примем $\delta T = 3~\%$, тогда при $\Delta F^* = 0.014$ и T = 10 с будем иметь

$$\left| \left(\frac{dF}{dt} \right)_{F=0} \right|_{\min} \ge 0.132 \,\mathrm{c}^{-1}. \tag{13}$$

Библиографический список

- 1. **Гутников В.С.** Интегральная электроника в измерительных устройствах. Л.: Энергоатомиздат, 1988. 303 с.
- 2. **Мурсаев А.Х., Смолов В.Б., Угрюмов Е.П.** Прецизионное быстродействующее время импульсное множительно-делительное устройство // Автометрия. 1975. № 4.
- 3. **Кудряшов И.А. и др.** Аналоговые и комбинированные электронные вычислительные устройства. Л.: Изд-е ЛВИКА им. А.Ф. Можайского, 1969.
- 4. **Шило В.Л.** Популярные микросхемы КМОП: справочник. М.: Ягуар, 1993. 84 с.

ЗАБОЛОТНОВА Ольга Юрьевна инженер-программист ФГУП "НИИ "Экран", аспирант Самарского государственного аэрокосмического университета им. С.П. Королева

Синтез алгоритмов управления для развертывания космической тросовой системы

О.Ю. Заболотнова

E-mail: o.zabolotnova@inbox.ru

Рассматривается синтез алгоритмов регулирования и фильтрации при проектировании системы управления развертыванием тросовой системы с базового космического аппарата, совершающего полет по околоземной орбите. Решение задач синтеза осуществляется с помощью методов нелинейного программирования, которые применяются для минимизации предлагаемых критериев оптимальности с использованием нелинейных моделей движения.

Ключевые слова: космическая тросовая система; регулятор; интегральный критерий оптимальности; минимаксный критерий оптимальности; алгоритмы фильтрации; метод случайного поиска; метод покоординатного спуска; номинальная программа развертывания.

O.Yu. Zabolotnova. Synthesis Of Control Algorithms For Deployment Of Space Tether System

The synthesis of algorithms of regulation and filtration is considered with designing a control system of expansion of tether system from a base space vehicle making flight on low-earth to an orbit. The decision of tasks of synthesis is carried out with the help of methods of nonlinear programming, which are applied to minimization of offered criteria of an optimality with use of nonlinear models of a movement.

Key words: space tether system; regulator; integral criterion of optimality; minimax criterion of optimality; algorithm of filtration; random search method; method of coordinate — wise descent; nominal program of deployment.

остановка задачи. Движение тросовой системы (TC) при ее развертывании с базового космического аппарата (KA) описывается достаточно сложной системой нелинейных дифференциальных уравнений, включающей уравнения движения KA, троса с грузом [1–3] и уравнения функционирования управляющего механизма [4].

При проектировании системы управления (СУ) развертыванием ТС решаются следующие задачи: построение номинальной программы развертывания, формирование принципиальной структуры системы регулирования, поиск оптимальных значений параметров регулятора, включение в контур системы стабилизации программного развертывания дополнительных элементов (фильтров, корректирующих устройств), повышающих качество переходных процессов и др.

В статье рассматриваются две задачи: оптимальный расчет значений параметров регулятора и фильтра. Причем при построении фильтра предлагается использовать упрощенную нелинейную математическую модель ТС, записанную в подвижной орбитальной системе координат. Использование такого нелинейного фильтра, учитывающего физическую сущность рассматриваемой задачи управления, позволяет достаточно просто уменьшить влияние ошибок измерений на работу системы регулирования.

Показано, что задачи расчета регулятора и фильтра, так же, как и в линейном случае [5], могут быть решены последовательно: сначала рассчитываются параметры оптимального регулятора, а затем параметры нелинейного фильтра. Для оптимальной настройки параметров регулятора и фильтра используются методы нелинейного программирования, минимизирующие предлагаемые критерии оптимальности.

В качестве примера приводится расчет параметров регулятора и фильтра для номинальной программы развертывания ТС, которая использовалась при реализации проекта YES2 [4] по спуску с орбиты легкой капсулы. Спуск был осуществлен с российского KA "Фотон-М3" в сентябре 2007 г.

Показано, что применение предлагаемых методов расчета позволяет существенно улучшить качество переходных процессов в системе регулирования. Кроме того, предлагаемый здесь вариант расчета оптимального регулятора позволяет легко учесть ограничения на вращательные движения концевого тела. Ограничения учитываются путем модификации критерия оптимальности с помощью метода штрафных функций.

Математическая постановка задачи. Математическую модель объекта управления (тросовой системы) вместе с системой регулирования можно представить в следующей общей форме:

$$\frac{dx}{dt} = F(x,u); \tag{1}$$

$$u(t) = u^{0}(t) + K^{T}[\tilde{z} - z^{0}(t)];$$
 (2)

$$z = f(x) + w(t); (3)$$

$$\frac{dy}{dt} = \Phi(y, u) + P(z - \widetilde{z}); \tag{4}$$

$$\tilde{z} = \varphi(y),$$
 (5)

где $x = (x_1, x_2, ..., x_n)^{\mathrm{T}}$; $y = (y_1, y_2, ..., y_m)^{\mathrm{T}}$ — вектора переменных состояния объекта управления и фильтра; t — время; u(t) — скалярное управление; $z = (z_1, z_2, ..., z_k)$ — вектор измеряемых параметров; \tilde{z} — сглаженный вектор измеряемых параметров; F(x,u), $\Phi(y,u)$, f(x), $\varphi(y)$ — известные вектора-функции; $u^0(t)$, $z^0(t)$ — номинальные зависимости для управления измеряемых параметров; w(t) — случайный процесс, определяющий возникающие ошибки измерений; K — вектор параметров регулятора; P — матрица параметров фильтра.

В качестве управления при развертывании тросовой системы обычно рассматривается сила, возникающая в механизме разматывания троса, расположенном на KA: $u=F_y$.

Номинальная программа представляет собой заданные зависимости значений измеряемых переменных системы от времени. В качестве таких переменных чаще всего используют длину троса, выпущенного с помощью механизма разматывания $L^0(t)$, и скорость его развертывания $V^0(t)$, т.е. $z^0(t) = [L^0(t), V^0(t)]^{\mathsf{T}}$. В этом случае функция управления принимает вид

$$F_{v}(t) = F_{v}^{0}(t) + K_{L}(\widetilde{L} - L^{0}(t)) + K_{V}(\widetilde{V}_{L} - V_{L}^{0}(t)).$$
 (6)

Решается задача расчета оптимальных значений компонент вектора K и матрицы P в силу предлагаемых далее критериев оптимальности.

Метод расчета параметров регулятора. При расчете компонент вектора K сначала полагается, что ошибки измерения отсутствуют: w(t)=0. В этом случае $z=\widetilde{z}$ и задачи расчета регулятора и фильтра отделяются друг от друга. Следовательно, расчет регулятора осуществляется в соответствии с уравнениями (1-3) при условии задания некоторого критерия оптимальности J. Причем задаваемый критерий обычно зависит от ошибок управления $\Delta L = L - L^0$; $\Delta V = V_L - V_L^0$ и поправок к номинальному управлению $\Delta F_y = K_L \Delta L + K_V \Delta V$.

В статье используются два критерия оптимальности для решения задачи регулирования программного развертывания TC.

1. Классический интегральный квадратичный критерий оптимальности

$$J = \int_{0}^{T} (a\Delta L^2 + b\Delta V^2 + c\Delta F_y^2) dt, \qquad (7)$$

где T — полное время развертывания тросовой системы; a, b, c — положительные весовые коэффициенты критерия.

2. Минимаксный критерий, позволяющий не только минимизировать максимальные ошибки управления, но и исключить отрицательные значения силы F_v :

$$J = a \max_{t} |\Delta L(t)| + b \max_{t} |V(t)| - c \max_{t} \Delta F_{y}, \qquad (8)$$

где слагаемое с весовым коэффициентом c>0 позволяет учесть ограничения на минимальную величину силы F_{ν} .

В рассмотренных критериях оптимальности весовые коэффициенты являются положительными. В критерии оптимальности (8) знак минус перед коэффициентом c позволяет поднять уровень минимальных значений силы F_y и тем самым исключить отрицательные значения силы F_y в механизме разматывания (механизм лишь подтормаживает трос).

Это особенно актуально при использовании механизмов разматывания, работающих по принципу со-

скальзывания нити и не предусматривающих намотку троса. К таким механизмам относится механизм, используемый в проекте YES2 [4].

В рамках данного подхода могут быть учтены ограничения на угол между направлением троса и осью динамической симметрии груза $\alpha(x)$ и на модуль угловой скорости груза $\omega(x)$. Учет данных ограничений позволяет обеспечить заданную ориентацию груза (с некоторой допустимой ошибкой α_{max}) при отделении от TC, причем последующее вращательное движение груза происходит с небольшими угловыми скоростями (ω_{max}). Эти ограничения записываются в виде

$$\gamma_1 = \alpha - \alpha_{\text{max}} < 0;$$

$$\gamma_2 = \omega - \omega_{\text{max}} < 0.$$
(9)

Для решения задач условной минимизации критериев (7), (8) по коэффициентам обратной связи K_L , K_V с учетом ограничений (9) использовался метод штрафных функций [6] в сочетании с методами случайного поиска и циклического координатного спуска. В этом случае критерий J, который зависит от задаваемых коэффициентов K_L , K_V и может быть вычислен путем численного интегрирования системы (1), записывается с учетом ограничений (9) в виде

$$\Omega(K_L, K_V) = J(K_L, K_V) + \lambda \Psi(\gamma_1, \gamma_2), \tag{10}$$

где λ — параметр метода штрафных функций; $\Psi(\gamma_1\,,\gamma_2\,) = \sum_{\nu=1}^2 \mu(\gamma_\nu\,); \quad \mu(\tau) = \begin{cases} \tau, & \tau \geq 0; \\ 0, & \tau < 0. \end{cases}$

Таким образом, регулятор (6) настраивается на заданную номинальную программу управления посредством минимизации критерия оптимальности (10) с помощью методов нелинейного программирования с использованием некоторой математической модели движения ТС. Естественно, данный подход может быть использован в сочетании с любой системой уравнений движения объекта управления (1). Однако использование очень сложных моделей движения объекта управления (в частных производных [1] или с большим количеством элементов – точечных масс [2]), видимо, нерационально, особенно при проведении параметрических исследований работы системы управления. Поэтому при выборе математической модели тросовой системы необходим разумный компромисс между сложностью уравнений движения ТС и временными затратами при решении задачи оптимизации.

Метод расчета параметров фильтра. При расчете параметров фильтра необходимо определиться, прежде всего, со структурой фильтра — функцией $\Phi(y, u)$ в

уравнении (4) — и со структурой матрицы P, т.е. с теми компонентами матрицы, которые будут вычисляться при решении задачи оптимизации. Кроме того, необходимо задать критерий, минимизация которого позволит уменьшить влияние ошибок измерений на качество управления.

Структура фильтра должна быть достаточно простой, так как интегрирование уравнений фильтра (4) производится при работе системы управления в реальном масштабе времени. Здесь в качестве фильтра была использована достаточно простая модель объекта управления — уравнения плоского движения груза в подвижной орбитальной системе координат. Такая модель широко используется для приближенных расчетов движения тросовых систем [1, 7]. Поэтому уравнения фильтра записываются в следующем виде:

$$\frac{d\theta}{dt} = \omega_{\theta}; \tag{11}$$

$$\frac{d\omega_{\theta}}{dt} = -\frac{2}{L}V_L(\omega_{\theta} + \Omega) - \frac{3}{2}\Omega^2 \sin(2\theta); \tag{12}$$

$$\frac{dL}{dt} = V_L + P_{31}(L - \tilde{L}) + P_{32}(V_L - \tilde{V}_L);$$
 (13)

$$\frac{dV_L}{dt} = L[(\omega_\theta + \Omega)^2 - \Omega^2 (1 - 3\cos^2 \theta)] - \frac{F_y}{m} + P_{41}(L - \tilde{L}) + P_{42}(V_L - \tilde{V}_L), \tag{14}$$

где θ — угол отклонения троса от вертикали.

В соответствии со структурой фильтра (11)—(14) имеем

$$y = (\theta, \omega_{\theta}, L, V_L)^T, \quad P = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ P_{31} & P_{32} \\ P_{41} & P_{42} \end{pmatrix}. \tag{15}$$

Критерий оптимальности при расчете нелинейного фильтра, характеризующий ошибки фильтрации, зададим в виде

$$J_F = M \left\{ \int_0^T \left[\left\| P(z - \widetilde{z}) \right\|^2 \right] dt \right\}, \tag{16}$$

где $z-\widetilde{z}=(\Delta\widetilde{L},\Delta\widetilde{V})^T$; $\Delta\widetilde{L}=L-\widetilde{L};$ $\Delta\widetilde{V}=V-\widetilde{V};$ L и V- соответственно длина и скорость троса на выходе из фильтра; \widetilde{L} и $\widetilde{V}-$ измеренные значения длины и скорости троса; $\|P(z-\widetilde{z})\|-$ евклидова норма.

Критерий (16) отличается от критериев, используемых в задачах оптимальной статистической фильтрации [5], так как он не зависит от времени: операция математического ожидания берется от интеграла, взятого по всему интервалу движения системы.

Кроме того, критерий зависит от матрицы P (коэффициентов обратной связи фильтра). Введение данной зависимости приводит (как показали результаты оптимизации) к уверенному определению минимума критерия стандартными методами нелинейного программирования.

Несомненно, прямая минимизация статистического критерия оптимальности (16) по нелинейным моделям ТС и фильтра — чрезвычайно громоздкая процедура, так как на каждом шаге минимизации необходимо оценивать математическое ожидание интеграла, например, методом статистических испытаний.

Однако можно поступить иначе, решая задачу минимизации критерия (16), например, для одной реализации случайного процесса w(t) или изменяя реализации случайного процесса на каждом шаге оптимизации. Если значения критерия (16) мало зависят от конкретной реализации случайного процесса, то такой подход может оказаться существенно менее трудоемким. Данное утверждение имеет характер гипотезы, и качество управления и фильтрации, несомненно, должно быть проверено, например, методом статистических испытаний уже при выбранных компонентах матрицы P.

Пример расчета регулятора. Уравнения движения тросовой системы (1) могут быть представлены в различных формах и при различном наборе допущений [1]. Здесь уравнения движения ТС записаны в геоцентрической системе координат. При построении уравнений движения учитываются гравитационные силы и сила упругости троса (аэродинамическими силами пренебрегается). Поэтому уравнения движения центров масс КА и груза в векторном виде примут вид

$$\frac{d\vec{r}_i}{dt} = \vec{V}_i; \quad m_i \frac{d\vec{V}_i}{dt} = \vec{G}_i + \vec{F}_{T_i}, \tag{17}$$

где i =1,2; индексы 1 и 2 соответствуют грузу и KA; \vec{r}_i , \vec{V}_i — радиусы-вектора и скорости тел соответственно в геоцентрической системе координат; m_i — массы тел; \vec{G}_i = $-\frac{K}{r_i^3} \vec{r}_i$ — гравитационные силы в централь-

ном поле Земли;
$$\vec{F}_{Ti} = F_T \, \frac{\vec{r}_a - \vec{r}_b}{|\vec{r}_a - \vec{r}_b|}$$
 и $F_{T2} = -F_{T1}$ — силы

упругости, действующие на груз и KA соответственно; \vec{r}_a и \vec{r}_b — радиусы-вектора точек крепления троса

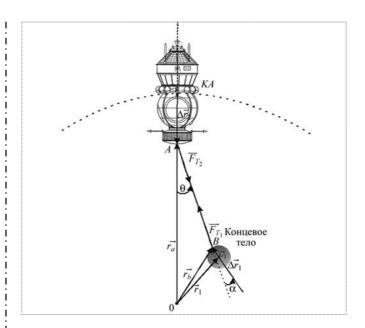
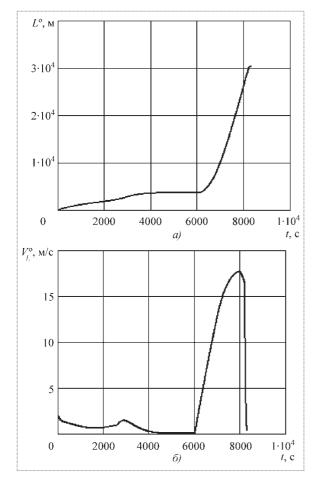


Рис. 1. Взаимное положение КА и груза на орбите

на KA и на грузе; F_T — модуль силы упругости троса. Взаимное положение KA и груза на орбите как твердых тел конечных размеров показано на рис. 1.

Так как трос не работает на сжатие, модуль силы упругости вычисляется по закону Гука из выражения

$$F_{T} = \begin{cases} c \frac{\left|\vec{r}_{a} - \vec{r}_{b}\right| - L}{\left|r_{a} - r_{b}\right|}, \text{если } \left|\vec{r}_{a} - \vec{r}_{b}\right| - L \ge 0; \\ 0, \qquad \text{если } \left|\vec{r}_{a} - \vec{r}_{b}\right| - L < 0, \end{cases}$$
(18)


где L — нерастянутая длина выпущенного из механизма троса; c = ES — коэффициент упругости; E — модуль Юнга; $S = \pi D^2/4$ — площадь поперечного сечения троса; D — диаметр троса.

 К этим уравнениям необходимо присоединить уравнения движения тормозного механизма

$$\frac{dL}{dt} = V_L; \ m_K \frac{dV_L}{dt} = F_T - F_y, \tag{19}$$

где m_K — коэффициент, характеризующий инерционность механизма разматывания (эквивалентная масса); F_y — сила в механизме разматывания троса.

Предполагается, что при развертывании ТС космический аппарат ориентирован по местной вертикали и удерживается в этом положении с помощью собственной системы стабилизации. Для приближенного расчета вращательного движения груза рассматривается плоский случай, поэтому

Рис. 2. Номинальная зависимость параметров троса от времени:

a — длины; δ — скорости развертывания

$$I\frac{d\omega}{dt} = -\Delta r_1 F_T \sin(\alpha); \quad \frac{d\alpha}{dt} = \omega + \Delta\omega, \tag{20}$$

где I — момент инерции груза; Δr_1 — расстояние от точки крепления троса В до центра масс груза; $\Delta \omega = -\frac{d\theta}{dt}$ —

угловая скорость вращения троса при развертывании TC (см. рис. 1).

Система уравнений (17), (19) представляет собой систему обыкновенных дифференциальных уравнений, которая может быть проинтегрирована с помощью любого стандартного метода интегрирования при заданной управляющей силе (6).

На основании построения этой системы уравнений можно сформулировать основные допущения рассматриваемой модели:

- 1. Гравитационное поле является центральным.
- 2. Сила упругости задается с помощью одностороннего закона Гука.

- 3. Диссипативными силами внутри TC пренебрегается.
- 4. На концевые тела тросовой системы действуют только гравитационные и упругие силы.
 - 5. Трос считается невесомым.
- 6. При расчете вращательного движения груза рассматривается плоский случай.
- 7. Изменением инерционности механизма управления при развертывании пренебрегается.

Принцип создания управляющей силы может быть различным. В настоящее время существуют два основных механизма создания силы F_{v} :

механизм с лебедкой, в котором трос намотан на барабан и управляющее воздействие заключается в создании вращающего момента $\boldsymbol{M}_b = \boldsymbol{F}_y r_L$ того или иного знака, приложенного к барабану (r_L — радиус барабана);

механизм, в котором трос соскальзывает с барабана и в котором сила F_{ν} лишь подтормаживает трос.

Здесь используются механизм второго типа, который применялся в эксперименте YES2 [4], а также критерий оптимальности (8). Номинальные зависимости для длины $L^0(t)$ и скорости развертывания $V_L^0(t)$ троса представлены на рис. 2.

Процесс развертывания тросовой системы состоит из двух этапов:

развертывание системы с малыми скоростями. При этом необходимо обеспечить безопасность отделения капсулы от KA (этот этап заканчивается, когда длина троса составляет ~ 3 км, и длится около 6000 c);

развертывание троса со значительно бо́льшими скоростями. При этом достигается заданный угол от-клонения троса от вертикали (этот этап заканчивается, когда длина троса составляет ~ 30 км, и длится около 2335 с).

В связи с изложенным выше сначала проводилась оптимизация на первом этапе ($t \le 6000$ с), а затем при фиксированных оптимальных коэффициентах на первом этапе отыскивался минимум критерия оптимальности для второго этапа развертывания.

Для примера приведем результаты численного моделирования процесса развертывания ТС на первом этапе для неоптимальных и оптимальных коэффициентов обратной связи для случая, когда КА находится на круговой орбите высотой 300 км.

На рис. 3, a показана зависимость управляющей силы от времени $F_{\nu}(t)$ на первом этапе развертывания. Коэффициенты обратной связи выбирались произвольно и в данном случае $K_{\nu} = K_L = 1$. При неоптимальных коэффициентах наблюдаются отрицатель-

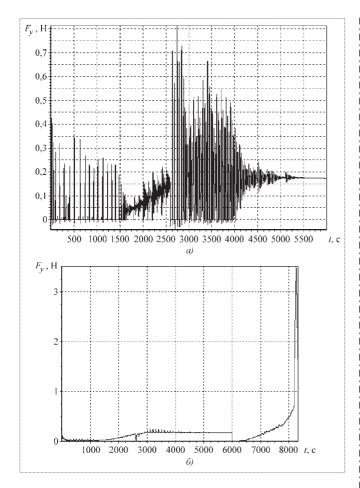


Рис. 3. Зависимость управляющей силы от времени: a — для неоптимальных коэффициентов обратной связи; δ — для оптимальных коэффициентов обратной связи

ные значения управляющей силы, что в принципе недопустимо. Ошибки управления в данном случае небольшие (по длине троса не превышают 2,1 м, а по скорости — 0.08 м/c), но вращательное движение капсулы неустойчивое. Груз совершает много оборотов вокруг своего центра масс.

Если же коэффициенты обратной связи определены по предлагаемой методике (рис. 3, δ), то все отрицательные значения управляющей силы исчезают, а колебания груза относительно центра масс становятся устойчивыми (рис. 4). При этом использовался минимаксный критерий оптимальности (8) с весовыми коэффициентами $a=b=c=1,\ c=100$ и с ограничением $\phi_1=\alpha-\frac{\pi}{2}\leq 0$. Значения полученных оптимальных ко-

эффициентов обратной связи на первом этапе развертывания: $K_L = 0.243$; $K_V = 7.824$.

Аналогичные результаты оптимизации были получены на втором этапе развертывания ТС при опти-

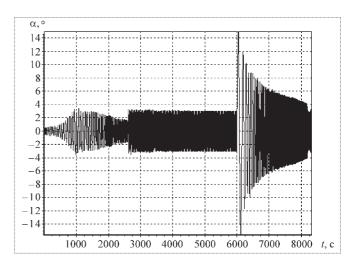


Рис. 4. Зависимость угла между осью симметрии груза и тросом от времени для оптимальных коэффициентов обратной связи

мальных коэффициентах обратной связи $K_L = 0.0055$; $K_V = 0.3427$.

Пример расчета фильтра. Для расчета матрицы коэффициентов обратной связи фильтра P использовал-

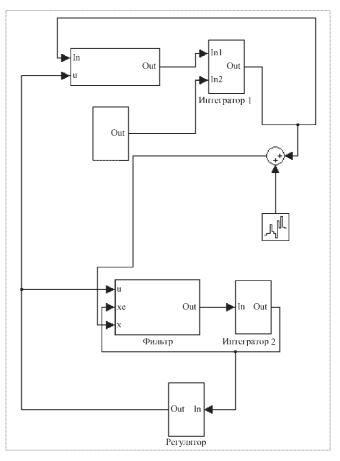


Рис. 5. Схема модели системы управления

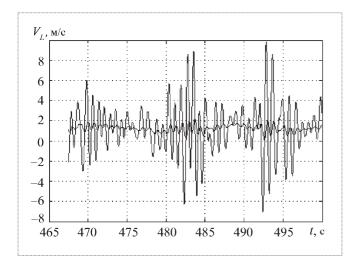


Рис. 6. Иллюстрация процесса фильтрации для скорости развертывания троса

ся математический пакет MatLab с приложением Simulink. Соответствующая схема системы регулирования с фильтром представлена на рис. 5. Критерий (16) минимизировался стандартными средствами пакета MatLab с помощью метода Нелдера—Мида по одной реализации случайного процесса (ошибок измерений). При расчете был принят нормальный закон распределения ошибок измерений со стандартными отклонениями по длине троса и скорости, равными 0,01 м и 0,01 м/с соответственно.

Результаты минимизации на первом этапе развертывания ТС: $P_{31}=0,1188;\ P_{32}=-0,1669;\ P_{41}=-0,0068;\ P_{42}=0,5744;\ J_F=1396,8.$ Начальное значение критерия оптимальности $J_F=21006,0$ при единичных коэффициентах обратной связи фильтра (рис. 6). Как показали исследования, полученное решение практически

не изменялось при использовании других реализаций случайного процесса для ошибок измерений.

Результаты моделирования показывают, что прямые методы расчета параметров системы регулирования и фильтрации достаточно эффективны. Они могут быть использованы при проектировании систем управления движением космических тросовых систем

Библиографический список

- 1. **Белецкий В.В., Левин Е.М.** Динамика космических тросовых систем. М.: Наука, 1990. 336 с.
- 2. **Дигнат Ф., Шилен В.** Управление колебаниями орбитальной тросовой системы // Прикладная математика и механика. 2000. Т. 64. Вып. 5. С. 747—754.
- 3. Асланов В.С., Ледков А.С., Стратилатов Н.Р. Пространственное движение космической тросовой системы, предназначенной для доставки груза на Землю // Общероссийский научно-технический журнал "Полет". 2007. № 2. С. 28—33.
- 4. **Kruijff M., Heide V., Calzada Gil S.** YES2 Inherently-Safe Tethered Re-entry Mission and Contingencies // Proceeding of the Russian-European Summer Space School. 2004. European Space Agency. 2004. P. 101–115.
- 5. **Дмитриевский А.А., Иванов Н.М., Лысенко Л.Н. и** др. Баллистика и навигация ракет. М.: Машиностроение, 1985. 312 с.
- 6. **Пшеничный Б.Н.**, **Данилин Ю.М.** Численные методы в экстремальных задачах. М.: Наука, 1975. 320с.
- 7. Gläβel H., Zimmermann F., Brückner S. et al. Adaptive neural control of the deployment procedure for tether-assisted re-entry // Aerospace Science and Technology. 2004. № 8. P. 73–80.

УДК 533.6

Система моментных уравнений для многоатомных газов

Ю.А. Никитченко

Тел.: 8-917-586-02-11

Предложена 24-моментная модель течения многоатомного газа. При выводе моментных уравнений применялся метод Грэда. Для замыкания системы уравнений использована эллипсои-дальная функция распределения. Энергия многоатомных молекул рассмотрена в двухтемпературном приближении. Проведено тестирование модели на примере решения задачи о профиле ударной волны.

Ключевые слова: моментные уравнения; двухтемпературная модель; профиль ударной волны.

Yu.A. Nikitchenko. The Moment Equations System Of Polyatomic Gases

This article the 24-moments model of polyatomic gas flow. Grad's method was applied for derivation of the moment equations. Ellipsoidal distribution function was used for system equations closure. Polyatomic molecules energy consider in two-temperature approximating. Shock wave profile validation test confirmed the validity of presented models.

Key words: moment equations; two-temperature model; shock wave profile.

Дин из подходов к построению моделей неравновесных течений носит название метода моментных уравнений. Метод основан на расширении системы дифференциальных уравнений динамики газа за пределы уравнений сохранения. В классической работе Грэда [1] построена система двадцати уравнений для моментов до третьего порядка включительно. В целях замыкания системы конструируется аппроксимирующая функция распределения, обеспечивающая "правильные" значения всех используемых моментов. Моменты более высокого порядка (у Грэда — моменты четвертого порядка) получают интегрированием аппроксимирующей функции распределения. С этой процедурой связана одна из особенностей метода — моменты четвертого порядка выражаются через моменты предыдущих порядков локально, без использования балансовых зависимостей типа моментных уравнений.

Другой важной особенностью модели Грэда является вид аппроксимирующей функции распределения. Последняя представлена в виде разложения равновесной функции по степеням проекций тепловой скорости молекул. Коэффициентами такого разложения являются неравновесные напряжения и моменты третьего порядка. В периферийной области пространства скоростей, т.е. при больших по модулю значениях молекулярных скоростей, функция распределения приобретает отрицательные значения. В слабо неравновесных течениях, где неравновесные напряжения и тепловые потоки (моменты третьего порядка) малы, отрицательные области не оказывают существенного влияния на вычисление моментов четвертого порядка. При высокой степени неравновесности, например в ударных волнах высокой интенсивности,

НИКИТЧЕНКО Юрий Алексеевич — доцент МАИ, старший научный сотрудник, кандидат техн. наук

неравновесные напряжения и тепловые потоки по порядку величины приближаются к давлению и потоку энергии. Выражения для моментов четвертого порядка становятся недостоверными. В работе [2] на примере задачи о профиле ударной волны показано, что ряд, используемый для аппроксимирующей функции, сходится в среднем при числах Маха, не превышающих 1,85.

Рассмотренный выше метод изначально применялся к описанию течений газа, состоящего из одноатомных молекул. В более поздних работах он был использован и для многоатомных газов (см., например, [3]).

С точки зрения задач газовой динамики практический интерес представляют реализации метода, позволяющие наиболее простым способом выделить энергию поступательного движения молекул из полной энергии теплового движения. Это связано с тем, что именно поступательная температура "отвечает" за коэффициент сдвиговой вязкости и нормальные напряжения в газе. Так называемые двухтемпературные модели позволяют отказаться от эвристически введенного в реологический закон Ньютона коэффициента объемной вязкости.

В настоящей статье ставится задача получения системы моментных уравнений с использованием аппроксимирующей функции распределения наиболее общего вида. Моменты интеграла столкновений представлены в виде релаксационных членов. Энергия внутренних степеней свободы усреднена по всем квантовым числам молекулы и рассматривается в классическом приближении. Правомерность таких допущений следует из того, что коэффициенты переноса рассматриваются в гидродинамическом приближении и для их определения не требуется конкретизация правой части кинетического уравнения.

В статье используются прямоугольные декартовы системы координат. Повторяющиеся подстрочные индексы α и β подразумевают суммирование одночлена, содержащего эти индексы, от 1 до 3, например: $A_{\alpha}B_{\alpha i}\equiv A_{1}B_{1i}+A_{2}B_{2i}+A_{3}B_{3i}$, $A_{\alpha}(C_{\alpha}+D_{\alpha})\equiv A_{\alpha}C_{\alpha}+A_{\alpha}D_{\alpha}\equiv A_{1}C_{1}+A_{2}C_{2}+A_{3}C_{3}+A_{1}D_{1}+A_{2}D_{2}+A_{3}D_{3}$.

1. Моментные уравнения

Общее уравнение переноса, записанное относительно одночастичной функции распределения, фазовое пространство которой дополнено пространством внутренней энергии молекулы ϵ , примет следующий вид:

$$\int \Phi \frac{\partial f}{\partial t} d\overline{\xi} d\varepsilon + \int \xi_{\alpha} \Phi \frac{\partial f}{\partial x_{\alpha}} d\overline{\xi} d\varepsilon =$$

$$= \int \Phi J^{+} d\overline{\xi} d\varepsilon - \int \Phi J^{-} d\overline{\xi} d\varepsilon. \tag{1.1}$$

Здесь ξ_i — молекулярная, тепловая и групповая (макроскопическая) скорости, $\xi_i = c_i + u_i$; $d\overline{\xi}$ — элемент объема в пространстве скоростей, $d\overline{\xi} = d\overline{c} = d\xi_1 \ d\xi_2 \ d\xi_3 = dc_1 \ dc_2 \ dc_3$; Φ — некоторый молекулярный признак, $\Phi = m_0 \, \xi_1^I \, \xi_2^m \, \xi_3^n$; m_0 — масса молекулы.

Очевидно, что в этом случае интегралы прямых и обратных столкновений J^- и J^+ , соответственно, будут учитывать как упругие, так и неупругие столкновения. Вид интегралов столкновений J^- и J^+ не детализирован, так как будут рассматриваться гидродинамические приближения моментов этих величин, представляющие поток величины Φ в единицу объема (для J^+) или из единицы объема (для J^-) в единицу времени в результате межмолекулярных столкновений.

Выбирая поочередно в качестве Φ массу молекулы m_0 или какую-либо составляющую ее импульса — m_0 ξ_i , получим первые четыре моментных уравнения:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_{\alpha}}{\partial x_{\alpha}} = 0, \tag{1.2}$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_\alpha} (\rho u_i u_\alpha + P_{i\alpha}) = 0; \quad i = 1, 2, 3. \quad (1.3)$$

Здесь ρ — плотность газа; P_{ij} — напряжения; $P_{ij} = p_{ij} + \delta_{ij} p$; p_{ij} — неравновесные напряжения; p — "механическое" давление (давление в термодинамическом понимании в настоящей статье не используется), $p = \frac{1}{3} P_{\alpha\alpha} = \rho R T_t$; T_t — поступательная температура; R — газовая постоянная; δ_{ij} — символ Кронекера.

Комбинация (1.2) и (1.3) позволяет получить уравнение для макроскопической скорости и три вспомогательных уравнения, которые будут использованы в дальнейших преобразованиях:

$$\frac{\partial u_i}{\partial t} + u_\alpha \frac{\partial u_i}{\partial x_\alpha} + \frac{1}{\rho} \frac{\partial P_{i\alpha}}{\partial x_\alpha} = 0, \tag{1.4}$$

$$\frac{\partial \rho u_i^2}{\partial t} + \frac{\partial}{\partial x_{\alpha}} (\rho u_i^2 u_{\alpha}) + 2u_i \frac{\partial P_{i\alpha}}{\partial x_{\alpha}} = 0, \qquad (1.5)$$

$$\frac{\partial}{\partial t} (\rho u_i u_j) + \frac{\partial}{\partial x_{\alpha}} (\rho u_i u_j u_{\alpha}) + u_i \frac{\partial P_{j\alpha}}{\partial x_{\alpha}} +$$

$$+ u_j \frac{\partial P_{i\alpha}}{\partial x} = 0, \qquad (1.6)$$

$$\frac{\partial}{\partial t}(\rho u_i u_j u_k) + \frac{\partial}{\partial x_\alpha}(\rho u_i u_j u_k u_\alpha) +
+ u_i u_j \frac{\partial P_{k\alpha}}{\partial x_\alpha} + u_i u_k \frac{\partial P_{j\alpha}}{\partial x_\alpha} + u_j u_k \frac{\partial P_{i\alpha}}{\partial x_\alpha} = 0.$$
(1.7)

Если принять $\Phi = m_0 \, \xi_i \, \xi_j$, то будет получено уравнение напряжений

$$\frac{\partial}{\partial t}(P_{ij} + \rho u_i u_j) + \frac{\partial}{\partial x_\alpha}(u_\alpha(P_{ij} + \rho u_i u_j) + u_i P_{j\alpha} + u_j P_{i\alpha} + 2 \varphi_{ij\alpha}) = \\
= m_0 \int (c_i c_j + u_i c_j + u_j c_i + u_i u_j) J^+ \times \\
\times d\overline{\xi} d\varepsilon - m_0 \int (c_i c_j + u_i c_j + u_j c_i + u_i u_j) J^- d\overline{\xi} d\varepsilon.$$
(1.8)

Здесь φ_{ijk} — моменты третьего порядка, $\varphi_{ijk} = \frac{m_0}{2} \int c_i c_j c_k f \, d\bar{c} \, d\epsilon \ .$

Правая часть (1.8) может быть перегруппирована следующим образом:

$$\frac{\partial}{\partial t} (P_{ij} + \rho u_i u_j) + \frac{\partial}{\partial x_\alpha} (u_\alpha (P_{ij} + \rho u_i u_j) + u_i P_{j\alpha} + u_j P_{i\alpha} + 2 \varphi_{ij\alpha}) = m_0 \int (u_i c_j + u_j c_i + u_i u_j) \times (J^+ - J^-) d\overline{\xi} d\varepsilon + m_0 \int c_i c_j (J^+ - J^-) d\overline{\xi} d\varepsilon.$$
(1.9)

Первый интеграл правой части (1.9) обращается в нуль, так как содержит инварианты столкновений. Второй интеграл соответствует быстроте изменения нормального напряжения P_{ij} . Этот интеграл можно представить как

$$m_{0} \int c_{i} c_{j} (J^{+} - J^{-}) d \overline{\xi} d \varepsilon = \frac{P_{ij}^{+}}{\tau^{+}} - \frac{P_{ij}}{\tau} = \frac{p_{ij}^{+} + \delta_{ij} p^{+}}{\tau^{+}} - \frac{p_{ij} + \delta_{ij} p}{\tau^{+}} - \frac{p_{ij} + \delta_{ij} p}{\tau^{-}} = \frac{p_{ij} - \frac{\tau}{\tau^{+}} p_{ij}^{+}}{\tau^{-}} - \delta_{ij} \frac{p - \frac{\tau}{\tau^{+}} p^{+}}{\tau^{-}} = \frac{1 - \frac{\tau}{\tau^{+}} \Pi}{\tau} p_{ij} - \delta_{ij} \frac{2}{3} \Xi.$$

$$(1.10)$$

Здесь и далее верхний индекс "+" обозначает принадлежность данной величины к процессу обратных столкновений молекул. Частоты прямых и обратных столкновений $1/\tau$ и $1/\tau^+$ учитывают упругие и неупругие столкновения (только в этом случае справедливо разложение

$$P_{i\,j}^{\scriptscriptstyle +} = p_{i\,j}^{\scriptscriptstyle +} + \delta_{i\,j} p^{\scriptscriptstyle +}$$
) . Величина $\Xi = rac{3}{2} \, rac{p - rac{ au}{ au^{\scriptscriptstyle +}} \, p^{\scriptscriptstyle +}}{ au} - rac{ au}{ au}$

удельный поток энергии от поступательных степеней свободы к внутренним степеням свободы в результате неупругих межмолекулярных столкновений (упругие столкновения не создают вклада в разность $p-p^+$). Скалярный коэффициент П без ущерба для инвариантности выражений (1.10) может быть представлен в виде $\Pi = p_{ij}^+/p_{ij}$, так как данное отношение не зависит от значений индексов, в противном случае компоненты тензора напряжений релаксировали бы с разной скоростью, что противоестественно.

Первое слагаемое правой части (1.10) описывает процесс релаксации неравновесных напряжений, поэтому уместно ввести обозначение

$$\tau_p = \frac{\tau}{1 - \frac{\tau}{\tau^+} \Pi},\tag{1.11}$$

где τ_{p} — время релаксации напряжений.

Уравнение (1.9) с учетом (1.6), (1.10) и (1.11) может быть представлено в следующем виде:

$$\frac{\partial}{\partial t} P_{ij} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} P_{ij}) + P_{j\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} + P_{i\alpha} \frac{\partial u_{j}}{\partial x_{\alpha}} +
+ 2 \frac{\partial \varphi_{ij\alpha}}{\partial x_{\alpha}} = -\frac{p_{ij}}{\tau_{p}} - \delta_{ij} \frac{2}{3} \Xi.$$
(1.12)

Уравнение (1.12) позволяет получить зависимости для давления $p=\frac{1}{3}\;P_{\alpha\,\alpha}$

$$\frac{\partial}{\partial t} p + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} p) + \frac{2}{3} \frac{\partial}{\partial x_{\alpha}} \varphi_{\alpha} + \frac{2}{3} P_{\beta \alpha} \frac{\partial u_{\beta}}{\partial x_{\alpha}} = -\frac{2}{3} \Xi.$$
 (1.13)

Здесь φ_i — проекции вектора теплового потока, возникающего в результате поступательного движения молекул, $\varphi_i = \frac{m_0}{2} \int c_i \, c^2 f \, d\bar{c} \, d\epsilon = \varphi_{i\,\alpha\,\alpha}$.

Если принять $\Phi = \varepsilon$, то будет получено уравнение энергии внутренних степеней свободы

$$\frac{\partial}{\partial t}\Omega + \frac{\partial}{\partial x_{\alpha}}(\omega_{\alpha} + u_{\alpha}\Omega) = \frac{\frac{\tau}{\tau^{+}}\Omega^{+} - \Omega}{\tau} = \Xi. \quad (1.14)$$

Здесь Ω — энергия внутренних степеней свободы молекул, находящихся в единице объема, $\Omega = \int \varepsilon f \, d\bar{c} \, d\varepsilon$; ω_i — проекция вектора теплового потока, обусловленная внутренней энергией молекул, $\omega_i = \int c_i \, \varepsilon \, f \, d\bar{c} \, d\varepsilon$. В правой части уравнения (1.14), как и в (1.12), учтен энергообмен между внутренними и поступательными степенями свободы.

Уравнения (1.13) и (1.14) позволяют записать уравнение полной энергии (без учета энергии движения центра массы системы)

$$\frac{\partial}{\partial t} \left(\frac{3}{2} R \rho T_t + \Omega \right) + \frac{\partial}{\partial x_{\alpha}} \left(u_{\alpha} \left(\frac{3}{2} R \rho T_t + \Omega \right) + q_{\alpha} \right) + P_{\alpha\beta} \frac{\partial u_{\beta}}{\partial x_{\alpha}} = 0,$$
(1.15)

где $q_{\scriptscriptstyle \alpha}$ — тепловой поток.

Соотношение $p_{ii} = P_{ii} - p$ с учетом (1.12) и (1.13) позволяет получить уравнение для нормальных неравновесных напряжений

$$\frac{\partial}{\partial t} p_{ii} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} p_{ij}) + P_{j\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} - \frac{2}{3} P_{\alpha\beta} \frac{\partial u_{\beta}}{\partial x_{\alpha}} + \frac{\partial}{\partial x_{\alpha}} \left(2 \varphi_{ii\alpha} - \frac{2}{3} \varphi_{\alpha} \right) = -\frac{p_{ij}}{\tau_{p}}.$$
(1.16)

Моменты третьего порядка могут быть получены из уравнения переноса при $\Phi = \frac{1}{2} m_0 \, \xi_i \, \xi_j \, \xi_k \, \text{ с последующим исключением}$ (1.4), (1.7) и (1.12):

$$\frac{\partial}{\partial t} \varphi_{ijk} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} \varphi_{ijk}) + \varphi_{ij\alpha} \frac{\partial u_{k}}{\partial x_{\alpha}} + \varphi_{ik\alpha} \frac{\partial u_{j}}{\partial x_{\alpha}} +
+ \varphi_{jk\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} - \frac{1}{2\rho} \left(P_{ij} \frac{\partial P_{k\alpha}}{\partial x_{\alpha}} + P_{ik} \frac{\partial P_{j\alpha}}{\partial x_{\alpha}} + P_{jk} \frac{\partial P_{i\alpha}}{\partial x_{\alpha}} \right) +
+ \frac{1}{2} \frac{\partial}{\partial x_{\alpha}} M_{ijk\alpha} = -\frac{\varphi_{ijk}}{\tau_{\alpha}}.$$
(1.17)

Здесь $M_{ijkl} = m_0 \int c_i \, c_j \, c_k \, c_l \, f \, d \, \overline{c} \, d \, \varepsilon$ — моменты четвертого порядка. Время релаксации моментов третьего порядка τ_{ϕ} формально определяется интегралом столкновений аналогично τ_p , но не совпадает с ним.

Уравнение вектора теплового потока, создаваемого переносом энергии внутренних степеней свободы, может быть получено, если в уравнении переноса принять $\Phi = \xi_i \varepsilon$ и из полученной зависимости исключить (1.4) и (1.14):

$$\frac{\partial}{\partial t} \omega_{i} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} \omega_{i}) + \omega_{\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} - \frac{\Omega}{\rho} \frac{\partial}{\partial x_{\alpha}} P_{i\alpha} + \frac{\partial}{\partial x_{\alpha}} M_{i\alpha}^{\Omega} = -\frac{\omega_{i}}{\tau_{\omega}}.$$
(1.18)

Здесь M_{ij}^{Ω} — моменты четвертого порядка, $M_{ij}^{\Omega} = \int c_i \, c_j \, \epsilon \, f \, d \, \bar{c} \, d \, \epsilon$. Процесс релаксации теплового потока ω связан как с поступательным, так и с внутренним движением молекул, поэтому характеризуется своим временем релаксации τ_{ω} , не совпадающим с τ_p или τ_{φ} .

Из полученных уравнений можно составить 24-моментную систему (моменты второго и третьего порядков представляют собой симметричные тензоры). В нее войдут уравнения от нулевого до третьего порядка включительно. Для замыкания системы необходимо определить моменты четвертого порядка, входящие в уравнения моментов третьего порядка, поток энергии Ξ и времена релаксации τ_p , τ_ϕ и τ_ϕ .

2. Замыкание системы моментных уравнений

Моменты четвертого порядка

Замыкание системы по моментам четвертого порядка проводится традиционным для моментных методов образом. Конструируется аппрокси-

мирующая функция распределения, моделирующая истинную функцию распределения, а затем формальным интегрированием аппроксимирующей функции определяются моменты четвертого порядка. Соответствие между аппроксимирующей и истинной функциями ограничивается, как правило, тем, что моменты низших порядков (в данном случае моменты до третьего порядка включительно) совпадают у обеих функций.

В настоящей статье предлагается моделирующая функция вида

$$f^* = f_2 F_{\omega} + f_3. \tag{2.1}$$

Здесь f_2 — функция распределения, моделирующая моменты от нулевого до второго порядков, за исключением энергии внутренних степеней свободы Ω , являющейся также моментом второго порядка; F_{ω} — функция распределения, моделирующая Ω ; f_3 — функция распределения, моделирующая моменты третьего порядка, включая тепловой поток ω , создаваемый переносом внутренней энергии молекул.

Функция f_2 имеет следующий вид:

$$f_2 = \frac{n}{(2\pi R)^{3/2} \sqrt{T_{11} T_{22} T_{33}}} \times \exp\left(-\frac{c_1^2}{2RT_{11}} - \frac{c_2^2}{2RT_{22}} - \frac{c_3^2}{2RT_{33}}\right).$$
(2.2)

Полужирным обозначены компоненты векторов и тензоров в главных осях тензора напряжений; T_{ii} — составляющие поступательной температуры; $\rho RT_{11} = P_{11}$, $\rho RT_{22} = P_{22}$, $\rho RT_{33} = P_{33}$ — главные значения тензора напряжений.

Если принять, что распределение молекул по внутренним энергиям не зависит от их тепловых поступательных скоростей, то

$$F_{\omega} = F_{\omega} (t, x_1, x_2, x_3, \varepsilon).$$
 (2.3)

Конкретный вид функции F_{ω} не существен, если речь идет о замыкании системы моментных уравнений. На эту функцию налагаются только два естественных условия:

$$\int F_{\omega} d\varepsilon = 1; \quad \int \varepsilon F_{\omega} d\varepsilon = \frac{\Omega}{n}. \tag{2.4}$$

В отношении функции f_3 можно отметить следующее. Если эта функция представлена в виде суммы функций, нечетных по одной или трем координатам пространства скоростей, то при вычислении моментов четвертого порядка интегралы таких функций тождественно обратятся в нуль. Таким образом, F_{ω} и f_3 могут быть представлены широким классом функций. Можно надеяться, что среди функций этого класса найдутся достаточно хорошо аппроксимирующие истинную функцию распределения.

Таким образом, моменты M_{ijkl} могут быть определены интегрированием только функции f_2 . Для определения моментов M_{ij}^{Ω} потребуется интегрирование произведения f_2F_{ω} .

Напряжения в произвольной системе координат могут быть представлены следующим образом:

$$P_{ij} = m_0 \int c_i c_j f_2 d\overline{c} =$$

$$= m_0 \int (e_{i1} e_{j1} c_1^2 + e_{i2} e_{j2} c_2^2 + e_{i3} e_{j3} c_3^2) f_2 d\overline{C}.$$
(2.5)

Здесь e_{ij} — косинусы углов между осями произвольной системы координат и главными осями тензора напряжений. В целях сокращения записи в правой части уравнения опущены слагаемые, содержащие проекции тепловой скорости в нечетной степени, не дающие вклада в интеграл. Учтено, что преобразование координат линейно и, следовательно, модуль якобиана преобразования равен единице. Элемент объема пространства скоростей $d\overline{C} \equiv d c_1 d c_2 d c_3$. После интегрирования получаем выражение

$$P_{ij} = e_{i1} e_{j1} P_{11} + e_{i2} e_{j2} P_{22} + e_{i3} e_{j3} P_{33}.$$
 (2.6)

В общем случае момент четвертого порядка может быть представлен как

$$M_{i j k l} = m_0 \int c_i c_j c_k c_l f_2 d\bar{c}. \qquad (2.7)$$

Вычисление этого интеграла проводится следующим образом. Перемножаются проекции тепловых скоростей с учетом их разложения по главным осям тензора напряжений. Опускаются

члены, содержащие проекции c_i в нечетных степенях. Оставшиеся члены группируются в суммы вида (2.5). Проводятся интегрирование и группировка в суммы вида (2.6). В результате получается следующее выражение:

$$M_{ijkl} = \frac{1}{\rho} (P_{ij} P_{kl} + P_{li} P_{jk} + P_{kl} P_{ij}).$$
 (2.8)

Моменты четвертого порядка, содержащие энергию внутренних степеней свободы, интегрируются элементарно с учетом (2.4) и (2.5):

$$M_{ij}^{\Omega} = \int \varepsilon c_i c_j f_2 F_{\omega} d\overline{c} d\varepsilon = \int \varepsilon F_{\omega} d\varepsilon \int c_i c_j f_2 d\overline{c} =$$

$$= \frac{\Omega}{n} \frac{P_{ij}}{m_0} = \frac{\Omega}{\rho} P_{ij}. \tag{2.9}$$

Производные моментов четвертого порядка в уравнениях моментов третьего порядка (1.17) и (1.18) с учетом (2.8) и (2.9) принимают следующий вид:

$$\frac{\partial M_{ijk\alpha}}{\partial x_{\alpha}} = \frac{1}{\rho} \left(P_{ij} \frac{\partial P_{k\alpha}}{\partial x_{\alpha}} + P_{ki} \frac{\partial P_{j\alpha}}{\partial x_{\alpha}} + P_{jk} \frac{\partial P_{i\alpha}}{\partial x_{\alpha}} \right) + R \left(P_{i\alpha} \frac{\partial T_{jk}}{\partial x_{\alpha}} + P_{k\alpha} \frac{\partial T_{ij}}{\partial x_{\alpha}} + P_{j\alpha} \frac{\partial T_{ki}}{\partial x_{\alpha}} \right), \tag{2.10}$$

$$\frac{\partial}{\partial x_{\alpha}} M_{i\alpha}^{\Omega} = \frac{\Omega}{\rho} \frac{\partial P_{i\alpha}}{\partial x_{\alpha}} + P_{i\alpha} \frac{\partial}{\partial x_{\alpha}} \left(\frac{\Omega}{\rho}\right). \tag{2.11}$$

Здесь T_{ij} — напряжение (плотность потока импульса), приходящееся на одну молекулу, $T_{ij} = \frac{P_{ij}}{\Omega R}$.

Уравнения моментов третьего порядка после подстановки (2.10), (2.11):

$$\frac{\partial}{\partial t} \varphi_{ijk} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} \varphi_{ijk}) + \varphi_{ij\alpha} \frac{\partial u_{k}}{\partial x_{\alpha}} + \varphi_{ik\alpha} \frac{\partial u_{j}}{\partial x_{\alpha}} +
+ \varphi_{jk\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} + \frac{R}{2} \left(P_{i\alpha} \frac{\partial T_{jk}}{\partial x_{\alpha}} + P_{j\alpha} \frac{\partial T_{ik}}{\partial x_{\alpha}} + P_{k\alpha} \frac{\partial T_{ij}}{\partial x_{\alpha}} \right) =
= -\frac{\varphi_{ijk}}{\tau_{\varphi}},$$

$$\frac{\partial}{\partial t} \omega_{i} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} \omega_{i}) + \omega_{\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} +
+ P_{i\alpha} \frac{\partial}{\partial x_{\alpha}} \left(\frac{\Omega}{\rho} \right) = -\frac{\omega_{i}}{\tau_{\varphi}}.$$
(2.12)

Таким образом, система моментных уравнений становится замкнутой по моментам четвертого порядка.

Время релаксации

В настоящей статье времена релаксации рассматриваются в гидродинамическом приближении, т.е. τ_p , τ_{ϕ} , τ_{ω} принимаются малыми величинами. В этом приближении уравнения неравновесных величин будут вырождаться в реологический закон Ньютона и закон Фурье, а сами неравновесные величины p_{ij} , ϕ_{ijk} , ω_i , как это следует из (1.12), (2.12) и (2.13), будут иметь первый порядок малости, т.е. порядок времени релаксации.

После умножения (1.12) на τ_p и исключения слагаемых, содержащих неравновесные величины, получим выражение для касательных напряжений ($i \neq j$) в гидродинамическом приближении

$$p_{ij} = -\tau_p \, p \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right). \tag{2.14}$$

При этом учтено, что $P_{ii} \rightarrow p$.

В реологическом законе Ньютона касательные напряжения выражаются как

$$p_{ij} = -\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \tag{2.15}$$

где µ – коэффициент вязкости.

Сравнение правых частей двух последних выражений приводит к вполне ожидаемому результату:

$$\tau_p = \frac{\mu}{p}.\tag{2.16}$$

Аналогичным образом определяется время релаксации теплового потока. В (2.12) отбрасываются слагаемые с неравновесными величинами. Учитывается, что $T_{ii} \to T_i \to T$, где T — термодинамическая температура. Моменты третьего порядка, выраженные через старшие члены (2.12):

$$\varphi_{iii} = -\tau_{\varphi} \frac{3}{2} Rp \frac{\partial T}{\partial x_i}, \qquad (2.17)$$

$$\varphi_{ijj} = -\tau_{\varphi} \frac{1}{2} Rp \frac{\partial T}{\partial x_i}, \quad i \neq j.$$
 (2.18)

Два последних уравнения совместно с зависимостью $\varphi_i = \varphi_{i\,\alpha\,\alpha}$ позволяют получить выражение для теплового потока поступательных степеней свободы в гидродинамическом приближении

$$\varphi_i = -\tau_{\varphi} \frac{5}{2} R p \frac{\partial T}{\partial x_i}. \tag{2.19}$$

Из закона Фурье

$$\varphi_i = -\frac{c_p}{\Pr} \mu \frac{\partial T}{\partial x_i}.$$
 (2.20)

Так как рассматриваются только поступательные степени свободы, то $c_p = (5/2)R$, Pr = 2/3, т.е. имеют место значения, соответствующие одноатомному газу,

$$\varphi_i = -\frac{15}{4} R \mu \frac{\partial T}{\partial x_i}.$$
 (2.21)

Сравнение правых частей (2.19) и (2.21), приводит к зависимости

$$\tau_{\varphi} = \frac{3}{2} \frac{\mu}{p} = \frac{3}{2} \tau_{p} \,. \tag{2.22}$$

В многоатомном газе к составляющей ϕ_i добавляется составляющая ω_i . Главные члены (2.13):

$$\omega_i = -\tau_{\omega} p \frac{\partial}{\partial x_i} \left(\frac{\Omega}{\rho} \right). \tag{2.23}$$

В рассматриваемом приближении $\Omega \to c_\Omega \, \rho \, T$, где c_Ω — теплоемкость внутренних степеней свободы, $c_\Omega = c_v - \frac{3}{2} \, R$. С учетом этого

$$\omega_i = -\tau_{\omega} c_{\Omega} p \frac{\partial T}{\partial x_i}. \tag{2.24}$$

В законе Фурье на долю внутренних степеней свободы отводится часть теплового потока

$$\omega_i = -\left(\frac{c_p}{\Pr} - \frac{15}{4}R\right)\mu \frac{\partial T}{\partial x_i} = -c_\omega \mu \frac{\partial T}{\partial x_i}.$$
 (2.25)

Из двух последних выражений следует

$$\tau_{\omega} = \frac{c_{\omega}}{c_{\Omega}} \frac{\mu}{p} = \frac{c_{\omega}}{c_{\Omega}} \tau_{p}. \tag{2.26}$$

Интенсивность обмена энергией между поступательными и внутренними степенями свободы молекулы

В уравнениях (1.12) и (1.14) интенсивность энергообмена между поступательными и внутренними степенями свободы выражена двумя способами:

$$\Xi = \frac{3}{2} \frac{p - \frac{\tau}{\tau^+} p^+}{\tau} \quad \text{if} \quad \Xi = \frac{\frac{\tau}{\tau^+} \Omega^+ - \Omega}{\tau}.$$

В терминах температуры эти зависимости принимают вид

$$\Xi = \frac{3}{2} \rho R \frac{T_{t} - \frac{\tau}{\tau^{+}} T_{t}^{+}}{\tau}, \qquad (2.27)$$

$$\Xi = \rho c_{\Omega} \frac{\frac{\tau}{\tau^{+}} T_{\Omega}^{+} - T_{\Omega}}{\tau^{-}}.$$
 (2.28)

Здесь T_Ω — температура внутренних степеней свободы молекул, $T_\Omega = \frac{\Omega}{\rho\,c_\Omega}$.

Время релаксации неравновесных напряжений в (1.11) представлено в виде

$$\tau_{p} = \frac{\tau}{1 - \frac{\tau}{\tau^{+}} \frac{p_{ij}^{+}}{p_{ij}^{-}}}.$$
 (2.29)

Разность температур $T_{\tau} - T_{\Omega}$ также является неравновесной величиной порядка τ , стремящейся к нулю в процессе релаксации. Время релаксации этой величины по аналогии с (2.29) может быть выражено как

$$\tau_{p\omega} = \frac{\tau}{1 - \frac{\tau}{\tau^{+}} \frac{T_{t}^{+} - T_{\Omega}^{+}}{T_{t} - T_{\Omega}}}.$$
 (2.30)

Представим интенсивность энергообмена Ξ в виде релаксационного члена разности $T_{\rm r}-T_{\Omega}$. Вычтем (2.28) из (2.27). Заменим c_{Ω} на $c_{\nu}-\frac{3}{2}R$ и перегруппируем члены следующим образом:

(2.26)
$$\frac{3}{2} \rho R \left(1 - \frac{\tau}{\tau^{+}} \frac{T_{t}^{+} - T_{\Omega}^{+}}{T_{t} - T_{\Omega}} \right) \frac{T_{t} - T_{\Omega}}{\tau} = c_{\nu} \rho \frac{\tau}{\tau^{+}} \frac{T_{\Omega}^{+} - T_{\Omega}}{\tau}.$$
 (2.31)

Левая часть (2.31) содержит выражение (2.30), а правая — аналогична (2.28). С учетом этого интенсивность теплообмена может быть представлена как

$$\Xi = \frac{3}{2} \rho R \frac{c_{\Omega}}{c_{\nu}} \frac{T_t - T_{\Omega}}{\tau_{\rho \Omega}}.$$
 (2.32)

Время релаксации $\tau_{p\omega}$ удобно представить в виде

$$\tau_{n,\omega} = h \tau_n. \tag{2.33}$$

Для определения параметра h существует ряд эмпирических и теоретических зависимостей, например в [4] предложено выражение

$$h = Z \frac{(7-2s)(5-2s)}{30}.$$
 (2.34)

Здесь Z^{-1} — доля неупругих столкновений по отношению к общему числу столкновений в газе, s — показатель степени температуры в уравнении для коэффициента вязкости.

В отношении (2.32) необходимо отметить, что аналогичные зависимости были получены и другими авторами (см., например [3]). Однако при их выводе разность между термодинамической и поступательной температурами (аналог $T_t - T_\Omega$) предполагалась малой величиной, т.е. рассматривалось слабо неравновесное состояние газа. Приведенный выше вывод зависимости (2.32) не накладывает каких-либо ограничений на степень неравновесности газа.

После подстановки (2.32) в (1.12), (1.13) и (1.15) система моментных уравнений замкнута.

Система моментных уравнений

Итоговые зависимости:

$$\begin{split} &\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_{\alpha}}{\partial x_{\alpha}} = 0; \\ &\frac{\partial u_{i}}{\partial t} + u_{\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} + \frac{1}{\rho} \frac{\partial P_{i \alpha}}{\partial x_{\alpha}} = 0; \\ &\frac{\partial T_{t}}{\partial t} + u_{\alpha} \frac{\partial T_{t}}{\partial x_{\alpha}} + \frac{2}{3} \frac{P_{\alpha \beta}}{\rho R} \frac{\partial u_{\beta}}{\partial x_{\alpha}} + \frac{2}{3\rho R} \frac{\partial \varphi_{\alpha}}{\partial x_{\alpha}} = & (2.35) \\ &= -\frac{5 - 3\gamma}{2h} \frac{T_{t} - T_{\Omega}}{\tau_{p}}; \\ &\frac{\partial T_{\Omega}}{\partial t} + u_{\alpha} \frac{\partial T_{\Omega}}{\partial x_{\alpha}} + \frac{1}{c_{\Omega} \rho} \frac{\partial \omega_{\alpha}}{\partial x_{\alpha}} = \frac{3(\gamma - 1)}{2h} \frac{T_{t} - T_{\Omega}}{\tau_{p}}; \end{split}$$

$$\begin{split} &\frac{\partial}{\partial t} p_{ij} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} p_{ij}) + P_{j\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} + P_{i\alpha} \frac{\partial u_{j}}{\partial x_{\alpha}} - \\ &- \delta_{ij} \frac{2}{3} P_{\alpha\beta} \frac{\partial u_{\beta}}{\partial x_{\alpha}} + 2 \frac{\partial}{\partial x_{\alpha}} \left(\varphi_{ii\alpha} - \delta_{ij} \frac{1}{3} \varphi_{\alpha} \right) = \frac{p_{ij}}{\tau_{p}}; \\ &\frac{\partial}{\partial t} \varphi_{ijk} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} \varphi_{ijk}) + \varphi_{ij\alpha} \frac{\partial u_{k}}{\partial x_{\alpha}} + \\ &+ \varphi_{ik\alpha} \frac{\partial u_{j}}{\partial x_{\alpha}} + \varphi_{jk\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} + \\ &+ \frac{R}{2} \left(P_{i\alpha} \frac{\partial T_{jk}}{\partial x_{\alpha}} + P_{j\alpha} \frac{\partial T_{ik}}{\partial x_{\alpha}} + P_{k\alpha} \frac{\partial T_{ij}}{\partial x_{\alpha}} \right) = -\frac{\varphi_{ijk}}{\tau_{\varphi}}; \\ &\frac{\partial \omega_{i}}{\partial t} + \frac{\partial}{\partial x_{\alpha}} (u_{\alpha} \omega_{i}) + \omega_{\alpha} \frac{\partial u_{i}}{\partial x_{\alpha}} + c_{\Omega} P_{i\alpha} \frac{\partial T_{\Omega}}{\partial x_{\alpha}} = -\frac{\omega_{i}}{\tau_{\omega}}. \end{split}$$

В этой системе

$$P_{ij} = p_{ij} + \delta_{ij} \rho R T_i; \quad T_{ij} = \frac{P_{ij}}{\rho R}; \quad \tau_p = \frac{\mu}{p}; \quad \tau_{\phi} = \frac{3}{2} \tau_p;$$

$$\tau_{\omega} = \frac{c_{\omega}}{c_{\Omega}} \tau_p; \quad c_{\Omega} = c_v - \frac{3}{2} R; \quad c_{\omega} = \frac{c_p}{Pr} - \frac{15}{4} R; \quad \gamma = \frac{c_p}{c_v}.$$

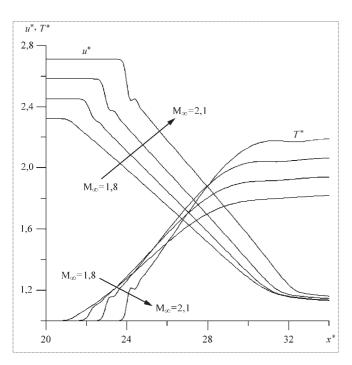
Термодинамическая температура может быть определена как средневзвешенное значение температур T_t и T_{\odot} :

$$T = \frac{1}{c_{in}} \left(\frac{3}{2} R T_t + c_{\Omega} T_{\Omega} \right).$$

Тепловой поток $q = \phi + \omega$.

3. Тестовый расчет

В качестве предварительного теста рассмотрена задача о профиле ударной волны. Такой выбор связан с тем, что решения систем моментных уравнений, как правило, ограничены по числу Маха рассчитываемых задач. С другой стороны, данная тестовая задача не требует формулирования граничных условий на границе раздела фаз.


Задача о профиле ударной волны решалась в традиционной постановке. На верхней по потоку границе расчетной области задавались условия невозмущенного потока, на нижней границе — условия Гюгонио. Расчет проводился двумя принципиально различными методами: по явной конечно-разностной схеме Мак-Кормака и по псевдонестационарному алгоритму Томаса [5]. Схема Мак-Кормака была реализована в классическом виде [5]. Для реализации алгоритма Томаса (метода прогонки) использовались следующие аппроксимации производных. Производные по

времени аппроксимировались линейно, двумя значениями функции на интервале Δt . Пространственные производные аппроксимировались кубической параболой на четырех узлах расчетной сетки. Значения производной брались в третьем узле. Оба использованных метода дали практически совпадающие результаты.

Тестирование показало, что профили ударных волн, рассчитанные для одноатомных и двухатомных газов, содержат участки, не соответствующие физической природе процессов. В ряде работ, посвященных исследованию моментных уравнений, в частности уравнений Грэда, такие участки называют субскачками. На рисунке представлены профили скорости и температуры для $M_{\infty}=1,8\dots 2,1$, шаг изменения числа Maxa 0,1.

Здесь принято
$$\mu=\mu(T^{\scriptscriptstyle 1}),\ \lambda_{\scriptscriptstyle \infty}=\frac{\mu_{\scriptscriptstyle \infty}}{p_{\scriptscriptstyle \infty}}\sqrt{RT_{\scriptscriptstyle \infty}}$$
. Как

следует из графиков, субскачок возникает в интервале чисел Маха 1,8...1,9. Именно в этом интервале нарушается сходимость степенного ряда, используемого для аппроксимирующей функции распределения в модели Грэда [2]. Однако функция (2.1), используемая в настоящей статье, не содержит разложения в ряд.

Профили скоростей $u^*=u/\sqrt{R\,T_\infty}$ и температуры $T^*=T/T_\infty$ в плоской ударной волне одноатомного газа ($x^*=x/\lambda_\infty$; \mathbf{M}_∞ = = 1,8...2,1; шаг изменения числа M 0,1)

Общим недостатком 20-моментной модели Грэда и предлагаемой в настоящей статье модели, является локализация моментов четвертого порядка. На это указывают и результаты работы [6]. В этой работе построена модель, уточняющая 13-моментную систему уравнений Грэда. Если отвлечься от специфических (и оригинальных) корректировок 13-моментной модели, то основное содержание работы сводится к тому, что для моментов четвертого порядка записываются соответствующие моментные уравнения, замыкаемые локализованными в указанном смысле моментами пятого порядка. Далее применяется процедура, аналогичная методу Чемпмена-Энскога. В результате для моментов четвертого порядка получают балансовые (нелокализованные) зависимости, которые и используются для замыкания уравнений третьего порядка.

Расчеты профиля ударной волны в аргоне, проведенные в работе [6], показали отсутствие ограничений на числа Маха у разработанной модели и продемонстрировали удовлетворительное совпадение с экспериментальными данными. Вместе с тем аппроксимирующая функция в работе [6] соответствует функции Грэда и содержит разложение равновесной функции в ряд по степеням тепловой скорости.

Анализ результатов, приведенных в настоящей статье, и работы [6] позволяет сделать вывод о том, что причиной высокочастотной неустойчивости моментных уравнений, полученных методом Грэда, является локальный характер высших моментов, используемых для замыкания системы. Конкретный вид аппроксимирующей функции, видимо, не существен.

Библиографический список

- 1. Грэд Г. О кинетической теории разреженных газов // Гидроаэромеханика. 1952. № 4. С. 71—97.
- 2. **Hollway L.N.** Existence of kinetic theory solutions to the shocks structure problem // Phys. Fluids. 1964. V. 7. № 6.
- 3. **Жданов В.М., Алиевский М.Я.** Процессы переноса и релаксации в молекулярных газах. М.: Наука, 1989. 336 с.
- Bird G.A. Molecular gas dynamics and the direct simulation of gas flows. Oxford: Clarendon Press, 1994.
- 5. **Флетчер К.** Вычислительные методы в динамике жидкостей. М.: Мир, 1991. Т. 1. 502 с.
- 6. **Torrilhon M., Struchtrup H.** Regularized 13-moment equations: chock structure calculations and comparison to Burnett models, J. Fluid Mech. (2004). V. 513. P. 171–178.

БУЛЫЧЕВ Владимир Юрьевич — аспирант Южно-Российско-го государственного университета экономики и сервиса

БУЛЫЧЕВ НОРИЙ Гурьевич — профессор Ростовского военного института Ракетных войск, доктор техн. наук

МАНИН
Анатолий Платонович — генеральный директор — главный конструктор ОАО НПИЦ "Арминт", доцент, доктор техн. наук

СЕМЕНОВ Игорь Геннадьевич научный сотрудник ОАО НПИЦ "Арминт"

Коррекция траекторной информации пассивной угломерной системы на основе инвариантов движения ЛА

В.Ю. Булычев, Ю.Г. Булычев, А.П. Манин, И.Г. Семенов

E-mail: post@armint.ru

Применительно к однопозиционной стационарной пассивной угломерной системе решена задача коррекции траекторной информации с использованием полного набора инвариантов, соответствующих плоскостному движению летательного аппарата (ЛА).

Ключевые слова: коррекция траекторной информации; инвариант движения; пассивная угломерная система; летательный аппарат; компенсация систематической ошибки.

V.Yu. Bulychev, Yu.G. Bulychev, A.P. Manin, I.G. Semenov. Trajectory Data Correction Of Passive Radial System Based On Invariants Of Aircraft Motions

The article describes a way to correct trajectory data of a fixed passive radial system using the full range of invariants, describing the flat of aircraft.

Key words: trajectory data correction; invariant of motion; passive radial system; aerial vehicle; systematic error compensation.

Теория и практика построения и эксплуатации однопозиционных стационарных и подвижных пассивных угломерных систем (ПУС) показывает [1...6], что проблема коррекции траекторной информации (ТИ) с учетом априорных данных о характере полета ЛА чрезвычайно актуальна, остается открытой по настоящее время и не нашла удовлетворительного решения в рамках классической теории оптимального статистического оценивания. В связи с этим большую ценность представляют различные алгоритмические методы коррекции ТИ, не претендующие на оптимальность, не требующие знания большого объема информации о законах распределения погрешностей измерений и легко реализуемые в вычислительном плане с точностью, приемлемой для практики.

Так, в работах [5, 6] развит один из таких алгоритмических методов, который с использованием скалярного инварианта (угла наклона плоскости движения ЛА к одной из координатных плоскостей) позволяет решать задачу коррекции ТИ путем компенсации постоянной систематической ошибки (СО) по углу места в предположении, что измерения азимута также содержат постоянную СО. Показано, что задача компенсации постоянной СО по азимуту на базе однопозиционной стационарной ПУС не имеет решения (не наблюдается).

Результаты моделирования, приведенные в работах [5, 6], показывают, что приемлемое качество компенсации угломестной СО на базе одного инварианта

обеспечивается далеко не во всех случаях. Это связано с тем, что вычисления на основе выражения для угла наклона плоскости не являются корректными (с вычислительной точки зрения) для некоторых условий наблюдения ЛА. Кроме того, использование лишь одного инварианта не позволяет реализовать потенциальные возможности алгоритмического метода компенсации СО, основанного на использовании совокупности различных инвариантов.

В работе [7] применение одного инварианта (угла наклона плоскости) позволило решить актуальную задачу для стационарной многопозиционной ПУС – задачу отождествления пеленгов группы одновременно наблюдаемых ЛА. Было показано, что применение такого инварианта обеспечивает децентрализованную (раздельную) обработку данных (исключая заключительный этап отождествления пеленгов - сортировку чисел). Однако в [7] также показано, что использование лишь одного скалярного инварианта зачастую не обеспечивает требуемую достоверность решения задачи отождествления пеленгов (особенно при плотном расположении ЛА в зоне наблюдения), а также вычислительную устойчивость к исходным данным и различного рода ошибкам (округления и измерения).

В работе [8] была обоснована необходимость использования векторного инварианта, включающего в себя все параметры указанной выше плоскости, что позволяет во многом преодолеть отмеченные недостатки скалярного подхода к задаче отождествления пеленгов. Очевидно, что данный принцип, основанный на использовании всех инвариантов задачи, необходимо применять и при компенсации СО измерений однопозиционной стационарной ПУС.

Цель настоящей статьи — разработка алгоритмического метода компенсации угломестной СО однопозиционной стационарной ПУС на основе совместного использования полной совокупности инвариантов плоскостного движения ЛА, обеспечивающего при этом вычислительную корректность и достаточно высокую точность процедуры коррекции угломерных данных.

Геометрия задачи и ее постановка

Пусть движение ЛА описывается следующим образом:

$$\Lambda = \Psi(t, \Lambda_0, U); \quad \Lambda_0 = \Lambda(t_0); \quad t \in [t_0, T], \tag{1}$$

где $\Lambda = [\Lambda_1^{\rm r}, \Lambda_2^{\rm r}, \Lambda_3^{\rm r}]^{\rm r}$ — расширенный вектор состояния ЛА соответствующей размерности; $\Lambda_1 = [x, y, z]^{\rm r}$ — вектор декартовых координат ЛА; $\Lambda_2 = [x, y, z]^{\rm r}$ — вектор скорости ЛА; Λ_3 — вектор существенных (ускорение и более высокие производные) и несущественных (параметры, характеризующие условия движения ЛА) параметров движения; $\Psi(\cdot)$ — векторная функция (в общем случае неизвестного вида), на поведение которой могут накладываться те или иные ограничения; U — вектор детерминированных или неизвестных воздействий, обеспечивающих в совокупности с $\Psi(\cdot)$ плоскостное движение ЛА.

Геометрия задачи приведена на рис. 1, точками ЛА $_i$, ЛА $_j$ и ЛА $_k$ показаны положения ЛА в моменты времени t_i , t_j и $\underline{t_k}$ соответственно $(t_i, t_j, t_k \in [t_0, T]; i, j, k \in \overline{0, M}; i \neq j \neq k)$.

На практике случай плоскостного движения ЛА (особенно на небольших временных интервалах) с априорно неизвестной (или известной недостаточно точно) правой частью первого выражения (1) является весьма распространенным [4].

Считаем, что в центре декартовой системы координат *ОХҮZ* расположена однопозиционная стационарная ПУС, для которой с учетом тради-

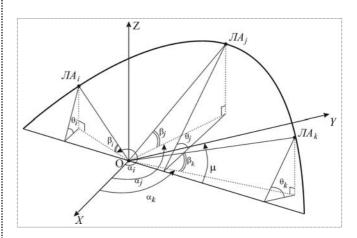


Рис. 1

ционного сглаживания первичных измерений справедлива следующая модель наблюдения:

$$\alpha_{m}^{*} = \alpha_{m} + S_{\alpha}, \quad \alpha_{m}^{*} \in [0, 2\pi];$$

$$\beta_{m}^{*} = \beta_{m} + S_{\beta}, \quad \beta_{m}^{*} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]; \quad m = \overline{0, M},$$
 (2)

где $\alpha_m = \alpha(t_m)$ и $\beta_m = \beta(t_m)$ — истинные азимут и угол места ЛА соответственно; S_α и S_β — постоянные СО измерений α и β соответственно; $t_m \in [t_0, t_1, ..., t_M]$.

Для простоты рассмотрим случай, когда движение ЛА происходит в плоскости, проходящей через начало системы координат *OXYZ* (см. рис. 1).

Требуется разработать алгоритмический метод компенсации СО S_{β} в измерениях угла места β с учетом СО S_{α} в модели наблюдения (2), используя все возможные инварианты плоскостной модели (1) движения ЛА. Кроме того, необходимо оценить влияние неизбежно присутствующих флуктуационных ошибок измерений на качество компенсации СО и определить условия применимости развиваемого метода.

Решение задачи в детерминированной постановке

Воспользуемся уравнением плоскостного движения ЛА

$$Ax + By + Cz = 0, (3)$$

учитывая, что плоскость (3) проходит через геометрический центр однопозиционной стационарной ПУС.

В качестве инвариантов движения ЛА можно принять величины B/A (A/B), C/A (A/C), B/C (C/B) (при условии, что соответствующие знаменатели не равны нулю), $A^0 = A(A^2 + B^2 + C^2)^{-1/2}$, $B^0 = B(A^2 + B^2 + C^2)^{-1/2}$, $C^0 = C(A^2 + B^2 + C^2)^{-1/2}$, θ , θ и др.

Геометрический смысл величин θ и μ ясен из рис. $1, \overline{N} = [A, B, C]^{^{\mathrm{T}}}$ и $\overline{N}^{\,0} = [A^{\,0}, B^{\,0}, C^{\,0}]^{^{\mathrm{T}}} - \text{со-ответственно нормаль и единичная нормаль к плоскости движения ЛА.$

В дальнейшем используемые в задаче компенсации СО инварианты включены в семейст-

во $I = \{I^{[1]}, I^{[2]}, ..., I^{[L]}\}$. Очевидно, что данные инварианты зависимы, однако в различных условиях наблюдения ЛА и при наличии погрешностей измерений формируемые на их основе адаптивные вычислительные алгоритмы (за счет комплексирования) по-разному проявляют свои точностные характеристики. Следует помнить, что на базе семейства I можно строить и другие инварианты, поскольку любая функция над $I^{[1]}, I^{[2]}, ..., I^{[L]}$ есть инвариант.

Следовательно, задача компенсации СО должна рассматриваться в адаптивной постановке с учетом избыточной информации, обеспечивающей привлечение семейства произвольных инвариантов.

Покажем возможность построения алгоритмов компенсации угломерной СО S_{β} для первой пары инвариантов: $I^{[1]} = (A/B)$ и $I^{[2]} = (C/B)$, где $B \neq 0$. С учетом геометрии задачи (см. рис. 1) и уравнения плоскости (3) можно записать

$$I^{[1]}\cos\xi + I^{[2]}\cos\gamma = -\cos\varsigma,$$

где $\cos \xi$, $\cos \gamma$, $\cos \zeta$ — направляющие косинусы линии визирования,

$$\cos \xi = \cos \alpha \cos \beta$$
; $\cos \zeta = \sin \alpha \cos \beta$; $\cos \zeta = \sin \beta$. (4)

Для двух моментов времени t_i и t_j (где $t_i \neq t_j$) сформируем систему линейных алгебраических уравнений

$$I^{[1]}\cos\xi_{i} + I^{[2]}\cos\gamma_{i} = -\cos\zeta_{i};$$

$$I^{[1]}\cos\xi_{i} + I^{[2]}\cos\gamma_{i} = -\cos\zeta_{i},$$
(5)

где
$$\xi_i = \xi(t_i);$$
 $\xi_j = \xi(t_j);$ $\gamma_i = \gamma(t_i);$ $\gamma_j = \gamma(t_j);$ $\zeta_i = \zeta(t_i);$ $\zeta_j = \zeta(t_j).$

Решая систему (5), находим

$$I_{ij}^{[1]} = \frac{\cos\gamma_i \cos\gamma_j - \cos\varsigma_i \cos\gamma_j}{\cos\xi_i \cos\gamma_j - \cos\gamma_i \cos\xi_j};$$

$$I_{ij}^{[2]} = \frac{\cos\varsigma_i \cos\xi_j - \cos\xi_i \cos\varsigma_j}{\cos\xi_i \cos\gamma_j - \cos\gamma_i \cos\xi_j},$$
(6)

где $I_{ij}^{[1]}$ и $I_{ij}^{[2]}$ — значения инвариантов $I^{[1]}$ и $I^{[2]}$, формируемые по измерениям, относящимся к моментам времени t_i и t_i соответственно.

Поскольку $I_{i\,j}^{[1]}=I_{j\,k}^{[1]}$ (где $t_k\neq t_j\neq t_i$), то с учетом (6) получим равенство

$$\frac{\cos \gamma_i \cos \zeta_j - \cos \zeta_i \cos \gamma_j}{\cos \xi_i \cos \gamma_j - \cos \gamma_i \cos \xi_j} =$$

$$= \frac{\cos \gamma_j \cos \zeta_k - \cos \zeta_j \cos \gamma_k}{\cos \xi_j \cos \gamma_k - \cos \gamma_j \cos \xi_k}$$

Проводя в данном равенстве подстановку (4) и заменяя с учетом (2) α_m на $\alpha_m^* - S_\alpha$ и β_m на $\beta_m^* - S_\beta$, после несложных, но громоздких преобразований получаем уравнение

$$K_{1}^{[r]}(i,j,k)\cos 2S_{\beta} + K_{2}^{[r]}(i,j,k)\sin 2S_{\beta} + K_{3}^{[r]}(i,j,k)\cos 4S_{\beta} + K_{4}^{[r]}(i,j,k)\sin 4S_{\beta} + K_{5}^{[r]}(i,j,k) = 0; \quad r = \overline{1,2},$$
(7)

где индекс [r] указывает на номер используемого инварианта.

Так, для инварианта $I^{[1]} = (A/B)$ коэффициенты уравнения (7) находятся по правилу

$$\begin{split} K_{1}^{[1]}(i,j,k) &= \sin(\beta_{i}^{*} + \beta_{j}^{*}) q^{[1]}(i,j,k) + \\ &+ \sin(\beta_{j}^{*} + \beta_{k}^{*}) \varphi^{[1]}(i,j,k); \\ K_{2}^{[1]}(i,j,k) &= -\cos(\beta_{i}^{*} + \beta_{j}^{*}) q^{[1]}(i,j,k) - \\ &- \cos(\beta_{j}^{*} + \beta_{k}^{*}) \varphi^{[1]}(i,j,k); \\ K_{3}^{[1]}(i,j,k) &= -2^{-1} \cos(\beta_{i}^{*} + 2\beta_{j}^{*} + \beta_{k}^{*}) \rho^{[1]}(i,j,k); \\ K_{4}^{[1]}(i,j,k) &= -2^{-1} \sin(\beta_{i}^{*} + 2\beta_{j}^{*} + \beta_{k}^{*}) \rho^{[1]}(i,j,k); \\ K_{5}^{[1]}(i,j,k) &= -\sin \Delta\beta_{jk} \sin \Delta\beta_{ij} \psi^{[1]}(i,j,k) + \\ &+ 2^{-1} \cos \Delta\beta_{ik} \rho^{[1]}(i,j,k). \end{split}$$

В формулах (8) используются следующие обозначения:

$$q^{[1]}(i,j,k) = \sin \Delta \beta_{jk} \left(\sin \Delta \alpha_{jk} - \sin \Delta \alpha_{ij} + \sin \Delta \alpha_{ki} \right);$$

$$\varphi^{[1]}(i,j,k) = \sin \Delta \beta_{ij} \left(\sin \Delta \alpha_{jk} - \sin \Delta \alpha_{ij} - \sin \Delta \alpha_{ki} \right);$$

$$\rho^{[1]}(i,j,k) = \sin \Delta \alpha_{jk} + \sin \Delta \alpha_{ij} + \sin \Delta \alpha_{ki};$$

$$\psi^{[1]}(i,j,k) = \sin \Delta \alpha_{jk} + \sin \Delta \alpha_{ij} - \sin \Delta \alpha_{ki},$$
(9)

где
$$\Delta \alpha_{mn} = \alpha_m^* - \alpha_n^*$$
; $\Delta \beta_{mn} = \beta_m^* - \beta_n^*$; $m, n \in \{i, j, k\}$.

Решая нелинейное уравнение (7) с учетом (8), (9), несложно определить искомую СО $S_{\beta} = S_{\beta}^{[1]}(i,j,k)$ по трем замерам пеленга ЛА, сделанным в моменты времени t_i , t_j , t_k , с использованием первого инварианта $I^{[1]} = (A/B)$.

Проводя аналогичные рассуждения для инварианта $I^{[2]} = (C/B)$, получим следующие выражения для искомых коэффициентов:

$$\begin{split} K_{1}^{[2]}(i,j,k) &= \sin\Delta\beta_{ij}\cos(\beta_{j}^{*} + \beta_{k}^{*})q^{[2]}(i,j,k) + \\ &+ \cos\Delta\beta_{jk}\sin(\beta_{i}^{*} + \beta_{j}^{*})\varphi^{[2]}(i,j,k) + \\ &+ \sin\Delta\alpha_{ji}\sin\Delta\beta_{kj}\cos(\beta_{i}^{*} + \beta_{j}^{*}) + \\ &+ \sin\Delta\alpha_{ji}\sin\Delta\beta_{kj}\cos(\beta_{i}^{*} + \beta_{k}^{*}); \\ K_{2}^{[2]}(i,j,k) &= \sin\Delta\beta_{ij}\cos(\beta_{j}^{*} + \beta_{k}^{*})q^{[2]}(i,j,k) + \\ &+ \cos\Delta\beta_{jk}\sin(\beta_{i}^{*} + \beta_{j}^{*})\varphi^{[2]}(i,j,k) + \\ &+ \sin\Delta\alpha_{ji}\sin\Delta\beta_{kj}\sin(\beta_{i}^{*} + \beta_{j}^{*}) - \\ &- \sin\Delta\alpha_{ji}\cos\Delta\beta_{ji}\cos(\beta_{j}^{*} + \beta_{k}^{*}); \\ K_{3}^{[2]}(i,j,k) &= -2^{-1}\sin(\beta_{i}^{*} + 2\beta_{j}^{*} + \\ &+ \beta_{k}^{*})(\varphi^{[1]}(i,j,k) + \sin\Delta\alpha_{ji}); \\ K_{4}^{[2]}(i,j,k) &= -2^{-1}\cos(\beta_{i}^{*} + 2\beta_{j}^{*} + \beta_{k}^{*}) \times \\ &\times (\varphi^{[2]}(i,j,k) + \sin\Delta\alpha_{ji}); \\ K_{5}^{[2]}(i,j,k) &= -\sin\Delta\beta_{jk}\sin\Delta\beta_{ij}q^{[1]}(i,j,k) - \\ &- \sin\Delta\alpha_{ji}\sin\Delta\beta_{kj}\cos\Delta\beta_{ji} - 2^{-1}(\varphi^{[2]}(i,j,k) - \\ &- \sin\Delta\alpha_{ij})\sin\Delta\beta_{ki}, \end{split}$$

где $q^{[2]}(i, j, k) = \sin \Delta \alpha_{kj} - \sin \Delta \alpha_{ik}; \varphi^{[2]}(i, j, k) = \sin \Delta \alpha_{kj} + \sin \Delta \alpha_{ik}.$

При выводе соотношений (10) предполагалось выполнение условия

$$\alpha_i^* \neq \pi/2 + \pi n$$

где n = 0, 1.

Решение нелинейного уравнения (7) относительно искомой СО S_{β} можно существенно упростить, если сделать предположение о малости данной ошибки. В этом случае можно воспользоваться принципом линеаризации, ограничившись в соответствующем ряде Тейлора двумя первыми членами:

$$f_{ijk}^{[r]}(S_{\beta}) = f_{ijk}^{[r]}(0) + S_{\beta} \frac{df_{ijk}^{[r]}}{dS_{\beta}}\Big|_{S_{\beta}=0}$$
; $r = 1, 2, (11)$

где функция $f_{ijk}^{[r]}(S_{\beta})$ равна левой части выражения (7). При этом

$$f_{i,i,k}^{[r]}(0) = K_1^{[r]}(i,j,k) + K_3^{[r]}(i,j,k) + K_5^{[r]}(i,j,k),$$
 (12)

$$\frac{df_{ijk}^{[r]}(S_{\beta})}{dS_{\beta}} = -2K_{1}^{[r]}(i,j,k)\sin 2S_{\beta} +
+2K_{2}^{[r]}(i,j,k)\cos 2S_{\beta} -4K_{3}^{[r]}(i,j,k)\sin 4S_{\beta} +
+4K_{4}^{[r]}(i,j,k)\cos 4S_{\beta},$$
(13)

$$\left. \frac{df_{ijk}^{[r]}(S_{\beta})}{dS_{\beta}} \right|_{S_{\beta}=0} = 2K_{2}^{[r]}(i,j,k) + 4K_{4}^{[r]}(i,j,k). \quad (14)$$

С учетом (11)...(14) имеем

$$f_{ijk}^{[r]}(S_{\beta}) = K_{1}^{[r]}(i,j,k) + K_{3}^{[r]}(i,j,k) + + K_{5}^{[r]}(i,j,k) + 2S_{\beta}[K_{2}^{[r]}(i,j,k) + 2K_{4}^{[r]}(i,j,k)] = 0.$$
(15)

Решая уравнение (15) относительно S_{β} , получаем удобное выражение для оценивания угломестной СО относительно трех моментов времени t_i , t_j , t_k :

$$S_{\beta}^{[r]}(i,j,k) = -\frac{K_{1}^{[r]}(i,j,k) + K_{3}^{[r]}(i,j,k)}{2[K_{2}^{[r]}(i,j,k) + 2K_{4}^{[r]}(i,j,k)]} + \frac{K_{5}^{[r]}(i,j,k)}{2[K_{2}^{[r]}(i,j,k) + 2K_{4}^{[r]}(i,j,k)]}; r = 1, 2.$$

$$(16)$$

На основе общего нелинейного уравнения (7) можно получить более высокоточные алгоритмы оценивания СО S_{β} , если в соответствующем конечном ряде Тейлора удерживать большее число ненулевых членов.

К уравнениям вида (15) и (16) мы придем и в том случае, если воспользуемся инвариантом $I^{[3]}=(C/A)$. При этом изменятся лишь коэффициенты $K_p^{[3]}(i,j,k), \quad p=\overline{1,5}, \quad$ при выводе которых предполагается выполнение условия $\alpha_j^*\neq\pi n$, где n=0,1.

Учет флуктуационных ошибок пеленгования

Будем предполагать, что углы α и β оцениваются не только с СО S_{α} и S_{β} , но и с флуктуационными погрешностями $n_{\alpha} = n_{\alpha}(t)$ и $n_{\beta} = n_{\beta}(t)$:

$$\hat{\alpha} = \alpha^* + n_{\alpha} = \alpha + S_{\alpha} + n_{\alpha};$$

$$\hat{\beta} = \beta^* + n_{\beta} = \beta + S_{\beta} + n_{\beta}.$$
(17)

Также полагаем, что с использованием всех инвариантов мы построим L алгоритмов оценивания СО S_{β} :

$$\begin{split} \hat{S}_{\beta}^{[l]}(i,j,k) &= \Psi^{[l]}(\hat{\alpha}_i,\hat{\beta}_i,\hat{\alpha}_j,\hat{\beta}_j,\hat{\alpha}_k,\hat{\beta}_k) = \\ &= \Psi^{[l]}(\hat{\varphi}), \ l = \overline{1,L}, \end{split} \tag{18}$$

где
$$\hat{\varphi} = [\hat{\varphi}_q, q = \overline{1, 6}]^{\mathrm{T}}$$
.

Пусть заданы следующие характеристики случайного вектора $\hat{\phi}$: математическое ожидание $M_{\phi} = [m_{\phi_q}, q = \overline{1,6}]^{^{\mathrm{T}}}$ и корреляционная матрица $K_{\phi} = [k_{\phi_n \phi_m}, n, m = \overline{1,6}], k_{\phi_n \phi_m} = \sigma_{\phi_n}^2$. Тогда для линейного случая дисперсия ошибки вычисления S_{B} с учетом (18) находится по формуле

$$\sigma_{S_{\beta}^{[I]}(i,j,k)}^{2} = \sum_{n=1}^{6} \left(\frac{\delta \Psi^{[I]}}{\delta \hat{\varphi}_{n}} \Big|_{\hat{\varphi}=M_{\varphi}} \right)^{2} \sigma_{\varphi_{n}}^{2} + \\
+ 2 \sum_{\substack{n=1\\n < m}}^{6} \sum_{m=1}^{6} \left(\frac{\delta \Psi^{[I]}}{\delta \hat{\varphi}_{n}} \Big|_{\hat{\varphi}=M_{\varphi}} \right) \left(\frac{\delta \Psi^{[I]}}{\delta \hat{\varphi}_{m}} \Big|_{\hat{\varphi}=M_{\varphi}} \right) k_{\varphi_{n} \varphi_{m}}; \quad n < m.$$
(19)

Формула (19) позволяет исследовать зависимость точности оценивания СО S_{β} от условий наблюдения ЛА, от выбора моментов измерений t_i , t_j , t_k и от характеристик погрешностей измерений. Так, для случая, когда в качестве инварианта $I^{[4]} = \theta$ использован угол наклона плоскости, в работе [6] получено конечное аналитическое выражение для $\sigma_{S_{\beta}^{[I]}(i,j,k)}^2$ и построены соответствующие графики зависимости дисперсий ошибок оценивания СО S_{β} от различных параметров.

Использование избыточности для повышения качества оценивания угломестной систематической ошибки

Пусть оценка СО S_{β} строится на основе l-го инварианта. Тогда, используя всевозможные тройки $\underline{t_{i_n},t_{j_n}}$, t_{k_n} (здесь t_{i_n},t_{j_n} , $t_{k_n}\in[t_0,T]$, i_n , $j_n,k_n\in \overline{0}$, M, $t_{i_n}\neq t_{j_n}\neq t_{k_n}$, величина n означает номер тройки замеров, используемых для построения единичной оценки СО S_{β}), можно сформировать семейство единичных оценок $\hat{S}_{\beta}^{[l]}(i_n,j_n,k_n)$; $n=\overline{1,M_l}$, где $M_l\leq C_M^3=M!/[3!(M-3)!]$.

На базе данного семейства можно сформировать результирующую оценку $\hat{S}_{\beta}^{[l]}$ для l-го инварианта:

$$\begin{split} \hat{S}_{\beta}^{[I]} &= \Theta^{[I]} [\hat{S}_{\beta}^{[I]} (i_1, j_1, k_1), \hat{S}_{\beta}^{[I]} (i_2, j_2, k_2), \dots \\ &\dots, \hat{S}_{\beta}^{[I]} (i_{M_1}, j_{M_1}, k_{M_1})]; \ l = \overline{1, L}, \end{split}$$

где $\Theta^{[I]}[\cdot]$ — оператор оптимальной или квазиоптимальной обработки данных. Например, в качестве $\Theta^{[I]}[\cdot]$ можно использовать медианные алгоритмы для четного и нечетного числа единичных оценок [4]. Данные алгоритмы устойчивы к аномальным единичным оценкам и не требуют привлечения априорной статистической информации.

На этом этапе хорошо себя зарекомендовали мажоритарные алгоритмы.

Результаты моделирования

Пусть измерения проводятся в моменты времени $t_p = p \Delta t$; $p = \overline{0,14}$; $\Delta t = 1$ с; $S_\alpha = 7\pi/180$ [рад], $S_\beta = 5\pi/180$ [рад]. Модель наблюдения с учетом (17) принималась в виде

$$\hat{\alpha}_{p} = \alpha_{p} + S_{\alpha} + n_{\alpha,p}; \ \hat{\beta}_{p} = \beta_{p} + S_{\beta} + n_{\beta,p}.$$
 (20)

Флуктуационные шумы $n_{\alpha,p} = n_{\alpha}(t_p)$ и $n_{\alpha,p} = n_{\beta}(t_p)$ формировались датчиком случайных чисел по нормальному закону распределения с характеристиками

$$M[n_{\alpha, p}] = M[n_{\beta, p}] = 0;$$
 $M[n_{\alpha, p}, n_{\alpha, q}] = M[n_{\beta, p}, n_{\beta, q}] =$

$$= \begin{cases} 0 \text{ при } p \neq q; \\ \sigma^2 \text{ при } p = q. \end{cases}$$

Величины $n_{\alpha, p}$ и $n_{\beta, p}$ полагались некоррелированными.

Всего формировалось 15 моделей наблюдения (20), соответствующих 15 различным шумовым реализациям. В таблице представлены значения α_p и β_p , соответствующие одной шумовой реализации и плоскостному движению ЛА.

t_p , c	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\hat{\alpha}_p, \circ$	50,106	48,192	46,652	45,258	43,894	42,715	41,649	40,742	39,816	38,984	38,266	37,567	37,019	36,419	35,794	35,052
$\hat{\beta}_p$,°	37,685	34,990	32,613	30,358	28,130	26,100	24,206	22,502	20,812	19,251	17,843	16,490	15,324	14,140	13,570	12,930

Аналогично результирующие оценки, соответствующие всем используемым инвариантам, можно подвергнуть некоторому преобразованию с целью получения окончательной оценки угломестной СО

$$\hat{S}_{\beta} = \Theta[\hat{S}_{\beta}^{[1]}, \hat{S}_{\beta}^{[2]}, ..., \hat{S}_{\beta}^{[L]}],$$

где $\Theta[\cdot]$ — оператор совместной обработки оценок, соответствующих всем используемым инвариантам.

Для каждой модели наблюдения формировалось пять единичных оценок CO $\hat{S}^{[I]}_{\beta,k}(i,i+5,i+10);\;i=\overline{0,4}\;;r=1,2;k=\overline{1,15}.3$ десь индекс k указывает номер модели наблюдения, соответствующий номеру шумовой реализации.

Для всех значений $k=1,15\,$ и $i=0\,,4\,$ формировалась оценка

$$\hat{S}_{\beta}^{[r]} = (75)^{-1} \sum_{k=1}^{15} \sum_{i=1}^{4} S_{\beta,k}^{[r]}(i, i+5, i+10); \quad r = 1, 2.$$

Рассмотрим абсолютную ΔS_{eta} и относительную δS_{eta} погрешности оценивания СО S_{eta} известным

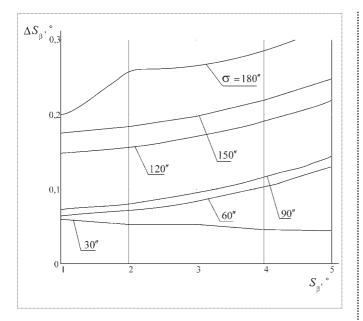


Рис. 2

методом [5, 6], а также абсолютные $\Delta S_{\beta}^{[1]}$, $\Delta S_{\beta}^{[2]}$ и относительные $\delta S_{\beta}^{[1]}$, $\delta S_{\beta}^{[2]}$ погрешности оценивания СО на базе инвариантов $I^{[1]}$ и $I^{[2]}$. На рис. 2 и 3 представлены зависимости ΔS_{β} и δS_{β} от величины S_{β} при различных значениях σ . Аналогичные зависимости для $\Delta S_{\beta}^{[1]}$, $\Delta S_{\beta}^{[2]}$ и $\delta S_{\beta}^{[1]}$, $\delta S_{\beta}^{[2]}$ приведены на рис. 4...7.

Анализ рисунков показывает, что линейный алгоритм (16) при r=2 с учетом принятого предположения о малости СО S_{β} является пред-

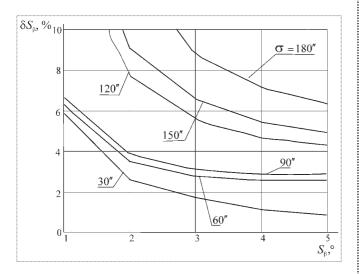


Рис. 3

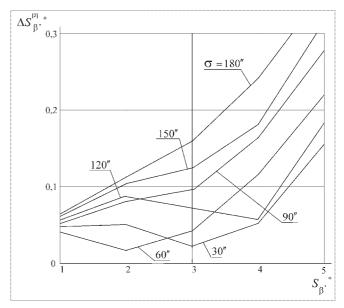


Рис. 4

почтительным по сравнению с известным алгоритмом [5, 6], основанном на применении угла наклона плоскости, и по сравнению с линейным алгоритмом (16) при r=1. Ощутимый выигрыш по точности достигается в окрестности малых значений угломестной СО. Очевидно, что решение нелинейного уравнения (7) позволит добиться повышения точности оценивания СО S_{β} и для других диапазонов изменения угломестной СО S_{β} .

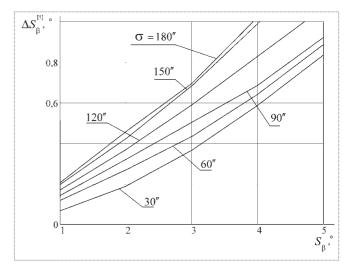


Рис. 5

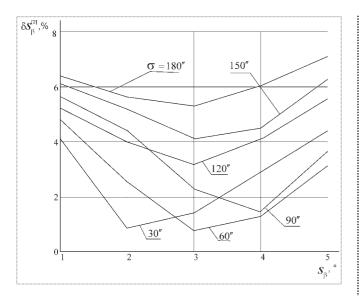


Рис. 6

На рис. 8 и 9 представлены абсолютная ΔS_{β} (2×3) и относительная δS_{β} (2×3) погрешности оценивания СО S_{β} с учетом мажоритарного правила ("два из трех") объединения оценок \hat{S}_{β} , $\hat{S}_{\beta}^{[1]}$ и $\hat{S}_{\beta}^{[2]}$. То есть находилось среднее арифметическое ближайших друг к другу двух оценок из трех имеющихся. Анализ рис. 8 и 9 показывает, что комплексирование известного [5, 6] и двух развитых алгоритмов позволяет существенно повысить точность оценивания угломестной СО.

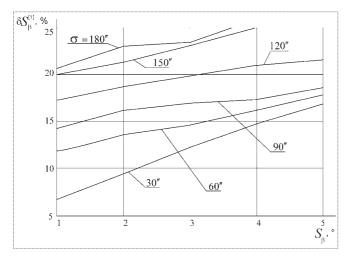


Рис. 7

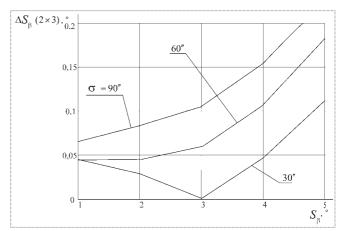


Рис. 8

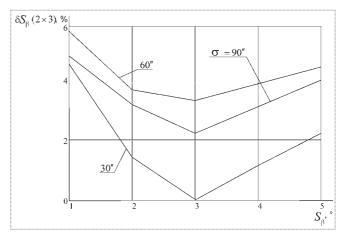


Рис. 9

Условия применимости метода

Анализ условий применимости разработанного метода показывает, что с учетом линеаризации (15) нелинейного уравнения (7) для обеспечения вычислительной корректности процедуры определения угломестной СО S_{β} (16) необходимо выполнение условия $K_{2}^{[r]}(i,j,k)+2K_{4}^{[r]}(i,j,k)\neq 0$. Так, для инварианта $I^{[1]}=(A/B)$ это означает

Так, для инварианта $I^{[1]} = (A/B)$ это означает выполнение условия

$$\cos(\beta_i^* + \beta_j^*) q^{[1]}(i, j, k) + \cos(\beta_j^* + \beta_k^*) \varphi^{[1]}(i, j, k) + + \sin(\beta_i^* + 2\beta_j^* + \beta_k^*) \varphi^{[1]}(i, j, k) \neq 0,$$
(21)

а для инварианта $I^{[2]} = (C/B)$ — условия

$$\sin \Delta \beta_{ij} \cos(\beta_{j}^{*} + \beta_{k}^{*}) q^{[2]}(i,j,k) +
+ \cos \Delta \beta_{jk} \sin(\beta_{i}^{*} + \beta_{j}^{*}) \varphi^{[2]}(i,j,k) +
+ \sin \Delta \alpha_{ij} \sin \Delta \beta_{kj} \sin(\beta_{i}^{*} + \beta_{j}^{*}) -
- \sin \Delta \alpha_{ji} \cos \Delta \beta_{ji} \cos(\beta_{j}^{*} + \beta_{k}^{*}) -
- \cos(\beta_{i}^{*} + 2\beta_{i}^{*} + \beta_{k}^{*}) \varphi^{[2]}(i,j,k) + \sin \Delta \alpha_{ji}) \neq 0. (22)$$

Решая неравенства (21) и (22) совместно относительно $\alpha_{i,j,k}^*$ и $\beta_{i,j,k}^*$ и опуская промежуточные преобразования, получаем следующие условия применимости разработанного метода:

траектория движения ЛА не должна лежать в плоскости OXY;

плоскость движения ЛА не может быть перпендикулярной к плоскости OXY;

попарная неколлинеарность линий визирования, соответствующих трем измерениям пеленга на ЛА.

Видно, что приведенные требования не накладывают существенных ограничений на область возможного применения метода и являются, скорее, исключением для практики. Следовательно, разработанный метод применим в большинстве задач, связанных с оперативным и достоверным оцениванием СО угловых измерений. Этот метод целесообразно использовать и в многопозицион-

ных ПУС для компенсации СО измерений отдельных пеленгаторов.

Библиографический список

- 1. **Клаус А.** О систематических ошибках определения траекторий // Труды 1-го Международного симпозиума ИФАК по автоматическому управлению в мирном использовании космического пространства. Норвегия. Ставангер. М.: Наука, 1968.
- 2. Жданюк Б.Ф. Основы статистической обработки траекторных измерений. М.: Советское радио, 1978.
- 3. **Космические** траекторные измерения / П.А. Агаджанов, Н.М. Барабанов, Н.И. Буренин и др. М.: Советское радио, 1969.
- 4. **Бульчев Ю.Г.**, **Манин А.П.** Математические аспекты определения движения летательных аппаратов. М.: Машиностроение, 2000.
- 5. **Булычев Ю.Г., Коротун А.А.** Компенсация систематической погрешности в радиопеленгаторах // Радиотехника. 1989. № 2.
- 6. **Булычев Ю.Г., Мужиков Г.П.** Коррекция измерений угла места в стационарном пеленгаторе при плоскостном движении цели // Изв. вузов. Радиоэлектроника. 1997. Т. 40. № 3—4.
- 7. **Бульчев Ю.Г., Таран В.Н.** Инвариантно-групповой метод отождествления пеленгов целей в триангуляционных многопозиционных системах пассивной локации // Радиотехника и электроника. 1987. Т. 32. № 4.
- 8. Отождествление пеленгов в угломерных системах на основе принципа децентрализации / Ю.Г. Булычев, И.А. Бабушкин, А.А. Мозоль и др. // Радиотехника и электроника. 2009. Т. 54. № 5.

Опубликованная в журнале "Полет" № 10, 2010 г. статья Вырыпаева А.А., Козлова Д.М., Комарова В.А., Кузнецова А.С. "Комплексный учет весовой и аэродинамической эффективности крыльев в проектировании самолетов" выполнена в рамках реализации ФЦП "Научные и научно-педагогические кадры в инновационной России на 2009—2013 годы".

Журнал зарегистрирован в Государственном комитете Российской Федерации по печати. Свидетельство о регистрации № 017751 от 23.06.98. Учредитель: ООО "Машиностроение—Полет"

Журнал распространяется по подписке, которую можно оформить в любом почтовом отделении (индекс по каталогу "Роспечать" 48906, каталогу "Пресса России" 29188 и каталогу "Почта России" 60258) или непосредственно в редакции журнала

Перепечатка материалов Общероссийского научно-технического журнала "Полет" возможна при письменном согласовании с редакцией журнала. При перепечатке материалов ссылка на Общероссийский научно-технический журнал "Полет" обязательна

000 "Издательство Машиностроение"/000 "Машиностроение-Полет", 107076, Москва, Стромынский пер., 4

Редакторы номера О.Г. Красильникова, И.Н. Мымрина, Д.Я. Чернис

Технический редактор Т.И. Андреева. Корректоры Л.И. Сажина, Л.Е. Сонюшкина

Сдано в набор 15.09.10. Подписано в печать 26.10.10. Формат $60 \times 88/8$. Усл. печ. л. 7,35. Уч.-изд. л. 7,10. Зак. 871. Свободная цена. Оригинал-макет и электронная версия подготовлены в OOO "Издательство Машиностроение".

Отпечатано в ООО "Подольская Периодика". 142110, Московская обл., г. Подольск, ул. Кирова, д. 15